
/AD-A194 642 THE STRUCTURE-MAPPING ENGINE- ALGORITHMN AND EXAMPLES 1/'1
(U) ILLINOIS UNIV AT URBANA DEPT OF COMPUTER SCIENCE
B FALI(ENHRINER ET AL JUL 87 UIUCDCS-R-87-136i

UNCLASSIFIED NBW~4-85-K-8559 F/G 12/9 NEhhhEIhBhEIhI
mhElhhhhhhhhI

I IhhEElhEElhhh
IEIhEEEEllhlIE
Ulllllll



11111- I~ 1112.

40 IWO__

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

___ - .. -- v -41 *--



SECURITY CLASSIFICATION OF THIS PAGE f.'"

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATI)N / DOWNGRADING SCHEDULE Approved for public release;

Distribution unlimited

4- PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UIUCDCS-R-87-1361

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Illinois(If applicable) Personnel and Training Research Programs

D oOffice of Naval Research (Code 1142PT)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1304 W. Springfield 800 N. Quincy Street
Urbana, Illinois 61801 Arlington, Virginia 22217-5000

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

I_ N00014-85-K-0559
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO

I 61153N RR04206 1 RR04206-OAI NR442a551
11 TITLE (Include Security Classification)

The Structure-Mapping Engine: Algorithm and Examples

12 PERSONAL AUTHOR(S)

Brian Falkenhainer, Kenneth D. Forbus, Dedre Gentner
13a. TYPE OF REPORT 113b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical J_ TR(38Z. Jl 1987 5
16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB-GROUP Inalogy, machine learning
05 08 Artificial Intelligence. matching-

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper describes the Structure-Mapping Engine 'jME), a program for studying analogical
processing. SME is based on Gentner's Structure-Mapping theory of analogy, and provides a
-'tool kit' for constructing matching algorithms consistent with this theory. Its flexibilit
enhances cognitive simulation studies by simplifying experimentation. Furthermore, SME is
very efficient, making it a useful component in machine learning systems as well. We revie -
the Structure-Mapping theory and describe the design of the engine. We analyze the complex- ,
ity of the algorithm, and demonstrate that most of the steps are polynomial, typically
bounded by,..O(N 2). Next'we demonstrate some examples of its operation taken from our
cognitive simulation studies and work in machine learning., ,Finally, we compare SME to other
analogy programs and discuss several areas for future work.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIEDUNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Susan Chipman (202)696-4318 ONR 1142PT

DO FORM 1473,84 MAR 83 APR edition may be used untlexhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.



I

THE STRUCTURE-MAPPING ENGINE:
ALGORITHM AND EXAMPLES

Brian Falkenhainer
Kenneth D. Forbus

Dedre Gentner

July 1987

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Avenue
Urbana, Illinois 61801

This research is supported by the Office of Naval Research. Personnel

and Training Research Programs. Contract No. N00014-85-K-0559.

Approved for public release: distribution unlim ited. Acces on F ," -

Submitted for publication. NTIS CR,'&l
DOI 1AL3 [J

t

;, A



CONTENTS

Contents

£I Introduction 1

2 Structure-Mapping Theory 2
2.1 Constraints on Analogy......................................... 2
2.2 Other types of similarity........................................ 4
2.3 Subprocesses in analogy.........................................5
2.4 Empirical evidence.............................................6U3 The Structure-Mapping Engine 6
3.1 Representation conventions...................................... 7

LI 3.1.1 Entities.............................................. 7
3.1.2 Predicates............................................. 7
3.1.3 Facts and Dgroups....................................... 9

3.2 The SHE Algorithm : Overview..................................... 10
3.2.1 Step 1: Local match construction............................. 11
3.2.2 Step 2: Global Match Construction............................ 14£3.2.3 Step 3: Compute Candidate Inferences .. .. .. .. .. .. ... ... ... .. 18
3.2.4 Step 4: Compute Structural Evaluation Scores .. .. .. .. ... ...... .. 19

3.3 Analysis. .. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... 23
3.3.1 Analysis of local match construction .. .. .. .. .. ... ... ... ... .. 24
3.3.2 Analysis of Conflicting calculation .. .. .. .. .. ... ... ... ... ... 24
3.3.3 Analysis of EMaps and NoGood calculation. .. .. .. .. ... ... ... .. 25
3.3.4 Analysis of Gmap merge steps. .. .. .. .. ... ... ... ... ... ... 25
3.3.5 Analysis of Finding Candidate Inferences. .. .. .. .. ... ... ... ... 26
3.3.6 Analysis of Structural Evaluation Score computation .. .. .. .. .. .. ... 26

4 Examples 27
4.1 Methodological constraints. .. .. .. .. ... ... ... ... ... ... ... ... 27
4.2 Solar System - Rutherford Atom Analogy .. .. .. .. .. ... ... ... ... ... 28
4.3 Discovering Heat Flow .. .. .. .. .. ... ... ... ... ... ... ... ... .. 29
4.4 Modelling Human Analogical Processing. .. .. .. .. .. ... ... ... ... ... 32
4.5 Review of Performance .. .. .. .. .. .. ... ... ... ... ... ... ... ... 35

5 Comparison With Other Work 35
5.1 Matching Algorithms. .. .. .. .. .. ... ... ... ... ... ... ... ... .. 37

6 Discussion 38
6.1 Implications for representation .. .. .. .. ... ... ... ... ... .. .... .. 38a6.2 Addressing the Combinatorics .. .. .. .. .. .. ... ... ... ... ... ... .. 39

6.2.1 Medium-grained Parallel Architectures .. .. .. .. .. .. ... ... ... .. 39
6.2.2 Connectionist Architectures. .. .. .. .. .. ... ... ... ... ... ... 40

6.3 Future Work. .. .. .. ... ... .. ... ... ... ... ... ... ... ... .. 41
6.3.1 Cognitive Simulation .. .. .. .. .. .. ... ... ... ... ... ... ... 41
6.3.2 Machine Learning Studies .. .. .. .. .. ... ... ... ... ... ... .. 42

gI



CONTENTS

17 Acknowledgements 42

A SM Match Rules 47I A.1 Literal Similarity (LS) Rules..................................... 47
A.2 Analogy (AN) Rule........................................... 48§ A.3 Mere Appearance (MA) Rules.................................... 49

B Samnple Domi Descriptions 50
B.1 Simple Water Flow - Heat Flow................................... 50
B.2 Solar-System - Rutherford Atom.................................. 51
B.3 Karla Stories............................................... 52



The Structure-Mapping Engine1

1 Introduction

Analogy is a computational process in which a given situation is understood by bringing to beara knowledge of previous, similar experiences. Analogy may be used to guide reasoning, to gener-
ate conjectures about an unfamiliar domain, or to generalize several experiences into an abstract
schema. Consequently, analogy is of great interest to both cognitive psychologists and artificial
intelligence researchers. Psychologists wish to clarify the mechanisms underlying analogy in ord:
to understand human learning and reasoning. Artificial Intelligence researchers wish to emulate
analogical processing on computers to produce more flexible reasoning and learning systems.

This paper describes the Structure-Mapping Engine (SM4), a program built to explore the com-

rZ.putational aspects of Gentner's Structure-Mapping theory of analogical processing [23,251. 5M4 has
been used both as a cognitive simulation of human analogical processing and as a component in a
larger machine learning system.

SHE is both flexible and efficient. It constructs all consistent ways to interpret a potential
analogy and does so without backtracking. %M4 provides a "tool kit" for constructing matchers
consistent with the kinds of comparisons sanctioned by Gentner's theory. A matcher is specified
by a collection of rules, which indicate what things might match and estimate how strongly these
matches should be believed. The program uses these estimates and a novel procedure for combining
the local matches constructed by the rules to efficiently produce and evaluate all consistent global
matches. This efficiency and flexibility makes the matching algorithm promising for exploration of
both the space of cognitive models and the computational aspects of analogy for Al.

Cognitive simulation studies can offer important insights for understanding the human mind.
They serve to verify psychological theories and force one to pin down those aspects of a theory
which might otherwise be left unspecified. They also offer unique opportunities to construct ide-
alized subjects, whose prior knowledge and set of available processes is completely known to the

V2 experimenter. Unfortunately, cognitive simulation programs tend to be complex and computation-
ally expensive (c.f. [1,591). Complexity can obscure the relationship between the theory and the
program. Typically there are many design decisions in building a program, and if one cannot assign
credit to them when analyzing results then it can be hard to see where the performance is really9 coming from. Often it is desirable to explore a space of similar architectures to determine what the
consequences of particular design decisions are and to model particular performance in detail. Such
explorations are very difficult if the major way to change the program's operation is surgery on the
code. Being computationally expensive means performing fewer experiments, and thus exploring
fewer possibilities. While there have been several important Al programs that study computational
aspects of analogy (e.g., [3,65,661), they were not designed to satisfy the above criteria.

Recently there has been a plethora of approaches to analogy in Al (as we review later), but
surprisingly little progress so far. Often papers describe programs that work on only a handful of
carefully chosen examples, and do not specify the algorithms in a replicable fashion. We believe
the reason so little progress has been made is that analogy is a complex problem, and that the
appropriate decomposition is critical. Without a good decomposition, it is easy to tackle several
semi-independent problems at once, or an underconstrained aspect of the problem, and become
lost in the space of possible mechanisms. Our decomposition, described in the next section, is

L psychologically motivated. Roughly, 514K focuses on the mapping aspect of analogy, leaving the
access and application aspects to future studies. The power of the program that results, and its
success on a wide variety of examples (over 40 as of this writing), provides additional evidence that
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the decomposition is a good one.
This paper examines the architecture of the Structure-Mapping Engine and how it has been

used for machine learning and cognitive simulation. First, we review Gentner's Structure-Mapping
theory and some of the psychological evidence for it. Next we discuss the organization of SHE,

including the knowledge representation conventions and the details of the algorithm. After a
* complexity analysis, we then illustrate SME's operation on several examples drawn from machine

learning and cognitive simulation studies. Related work in both Al and psychology is reviewed
next, followed by a discussion of further issues raised by this design.

2 Structure-Mapping Theory

The theoretical framework for this research is Gentner 's Structure-Mapping theory of analogy
[23,24,25,26,27,28). Structure-Mapping describes the set of implicit rules by which people interpret
analogy and similarity. The central idea is that an analogy is a mapping of knowledge from one
domain (the base) into another (the target) which conveys that a system of relations known to hold

* in the base also holds in the target. The target objects do not have to resemble their corresponding
base objects. Objects are placed in correspondence by virtue of corresponding roles in the common
relational structure.

This structural view of analogy is based on the intuition that analogies are about relations,
rather than simple features. No matter what kind of knowledge (causal models, plans, stories,
etc.), it is the structural properties (i.e., the interrelationships between the facts) that determine
the content of an analogy. For example, consider the heat flow and water flow situations shown in
Figure 1. These situations are thought to be analogous because they share the complex relationship
known as "flow". In each, we have a rough picture of something flowing downhill, from a source
to a destination. We prefer to ignore the appearances and even specific defining properties of the
objects, such as the fact that water and coffee are both liquids. Indeed, focusing on these attributes

V tends to confuse our picture of the analogy.

2.1 Constraints on Analogy

An important preliminary: We define the order of an item in a representation as follows: Objects
and constants are order 0. The order of a predicate is one plus the maximum of the order of its argu-
ments. Thus GREATER- THA U. y) is first-order if xand y are objects, and CAUSE [GRtEAT- THAN (x. y).
BREAK CW)I is second-order. Examples of higher-order relations include CAUSE and IMPLIES. This
definition of order should not be confused with the standard definition. 1 Essentially, we use this def-
in ition of order to indicate how deep the structure is below an item. Notice that intricate arguments
with many layers of justifications will give rise to representation structures of high order.

v Given collections of objects {b1}, {ti} in the base and target representations, respectively, the
tacit constraints on the analogical mapping M can be characterized as follows:

1. Objects in the base are placed in correspondence with objects in the target:

M: b - tt

'Under the standard definition, a logic is first-order if variables only range over objects and second-order when it
permits variables to range over predicates as well.
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Figure 1: Two physical situations involving flow.

2. Isolated object descriptions are discarded unless they are involved in a larger relational struc-
ture.

e.g. RED(b,) -- RE(ti)

3. Relations between objects in the base tend to be mapped across:

e.g. COLLIDE(bj,bi) -. COLLIDE(t.ti)

4. The particular relations mapped are determined by systematicity, as defined by the existence

of higher-order constraining relations which can themselves be mapped:

e.g. CAUSEPUSH(b,b).COLLIDE(b,.b t)
CAUSE [PUSH(ti, t,) COLLIDE (ti . ti)]

For example, consider the analogy between heat-flow and water-flow. Figure 2 shows what a

learner might know about the domains pictured in Figure 1. In order to comprehend the analogy

"Heat is like water" a learner must do the following (although not necessarily in this order):

1. Set up the object correspondences between the two domains:

heat -. water, pipe -. metal bar, beaker -* coffee, vial -. ice cube

2. Discard object attributes, such as LIQUID(water).

3. Map base relations such as

GREATER-THAN[PRESSURE(beaker). PRESSURE (vial)]

to the corresponding relations in the target domain.

4. Observe systematicity: i.e., keep relations belonging to a systematic relational structure in

preference to isolated relationships. In this example,

N, 'o. N
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WATER-FLOW HEAT-FLOW

CAUSE GREATER

GREATER FLOW(beaker vial,water.pipe)
TEMPERATtURE(colfee) TEMPERATURE(ice cubsa

PRESSUREI beaker) PRESSURE(vual)

GREATER FLOW(coffee.xce cubeheat.bar)

LIQUTDtwater)
DLAMETER(beaker) DIAMETER(vial) LIQUID(cofee)

FLAT-TOP(water) FLAT- TOP(coffee)

Figure 2: Simplified water flow and heat flow descriptions.

CAUSE (GREATER-THAN [PRESSURE (beaker),

PRESSURE(vial)].
FLOW(beaker. vial. water, pipe))

is mapped into

CAUSE(GREATE-THANCTEMPERATURE(coffee).
TEMPERATURE(ice cube)],

FLOW(coffee. ice cube. heat, bar))

while isolated relations, such as

GREATER-THOA(DIAMETER(beaker). DIAMETER(vial)]

are discarded.

The systematicity principle is central to analogy. Analogy conveys a system of connected knowl-
edge, not a mere assortment of independent facts. Preferring systems of predicates that contain
higher-order relations with inferential import is a structural expression of this tacit preference for
coherence and deductive power in analogy. Thus, it is the amount of common, higher-order re-
lational structure that determines which of several possible matchem is preferred. For example,

* suppose in the previous example we were concerned with objects differing in specific heat, such as
a metal ball-bearing and a marble of equal mass, rather than temperatures. Then DIAMETER would
enter the mapping instead of (or in addition to) PRESSURE, since DIAMETER affects the capacity of

a container, the analog to specific heat.

2.2 Other types of similarity

In addition to analogy, Structure-Mapping theory defines several other kinds of similarity. As we
have seen, in analogy only higher-order relations are mapped. Aspects of object descriptions which

2'I
,iI
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play no role in the relational structure are ignored. By contrast, in literal similarity both relational
predicates and object-descriptions are mapped. Literal similarity typically occurs in within-domain
comparisons, where the objects involved look alike as well as act alike. An example of a literal
similarity is the comparison "Kool-Aid is like water." 2 In mere-appearance matches, it is primarily
the object-descriptions which are mapped, as in the metaphor

"Her eyes were like the deep blue of a summer sky."

A fourth kind of mapping is the abstraction mapping. Here, the entities in the base domain
are variables, rather than objects. Few, if any, attributes exist that do not contribute to the base's
relational structure. The result of an abstraction matching is very close to the instantiation of a
rule. The difference is that only entities may be variables, whereas in many pattern-directed rule
systems predicates may be used in substitutions as well.

It should be-clear that Structure-Mapping neither subsumes unification, nor is subsumed by it.
For example, the pair of statements

(CAUSE (FLY PERSON1) (FALL PERSONI))
(CAUSE (FLY PERSON2) (FALL PERSON2))

could be part of an analogy, with PERSON1 being mapped to PERSON2, but these two statements do
not unify since PERSONI and PERSON2 are distinct constants. Conversely,

(CAUSE (?X PERSONI) (FALL PERSONI))

(CAUSE (FLY ?Y) (FALL ?Z))

will unify, assuming ? indicates variables, with the substitutions:

?X( - FLY

Y - PERSONI
?Z - PERSONI

However, since Structure-Mapping treats variables as constants, these statments fail to be
analogous in two ways. First, FLY and ?X are treated as distinct relations, and thus cannot match.
Second, ?Y and ?Z are considered to be distinct entities, and thus are forbidden to map to the same
target item (i.e., PERSON1).

2.3 Subprocesses in analogy

Structure-Mapping decomposes analogical processing into three basic stages ([29,22,26]):

1. Access: Given a current target situation, one must first retrieve from long-term memory

knowledge of another description, the base, which is analogous or similar to the target.

2. Mapping: This stage establishes correspondences between the base and target. Potentially,
Vi there is additional knowledge in the base that can be transferred to the target. This additional

knowledge is the set of candidate inferences sanctioned by the analogy.
2 Notice that our characterization of literal similarity is still structural, and thus is differs from other psychological

approaches (e.g., [561).

,Li
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3. Evaluation and Use: There are two kinds of criteria for evaluating the quality of a match. The
structural criteria include the number of similarities and differences, the degree of structural
similarity involved, and the amount and type of new knowledge or insight the analogy provides
via the candidate inferences. The second kind of criteria concerns the validity of the match and
the inferences it sanctions. The inferences must be checked against current world knowledge
to ensure that the analogy at least makes sense, and may require additional inferential work
to refine the results. Detailed characterization of the validity criteria lie outside the range of
the Structure-Mapping theory.

The Structure-Mapping Engine emulates the mapping stage of analogy and provides a struc-
tural, domain-independent evaluation of the match. While we believe it can be used to model
access, and provides useful results for accounts of evaluation and use (see [13,14]), we will ignore
these issues for most of this paper.

2.4 Empirical evidence

Although the focus of this paper is on computational modeling, one set of psychological findings is
particularly relevant. Empirical psychological studies have borne out the prediction that system-
aticity is a key element of people's implicit rules for analogical mapping. Adults focus on shared
systematic relational structure in interpreting analogy. They tend to include relations and omnit
attributes in their interpretations of analogy, and they judge analogies as more sound and more apt

* if base and target share systematic relational structure [23,29,301. In developmental work, it has
* been found that eight-year olds (but not five-year olds) are better at performing difficult mappings

when the base structure is systematic [31].

3 The Structure-Mapping Engine

A simulation of Gentner's theory has been implemented in the Structure-Mapping Engine (SHE).
Given descriptions of a base and target, SME constructs all structurally consistent mappings between
them. The mappings consist of pairwise matches between predicates and entities in the base
and target, plus the set of analogical inferences sanctioned by the mapping. SME also provides
a structural evaluation score for each mapping, allowing easy selection of the "best" mapping,
according to the rules of systematicity and consistency.

Importantly, SME is not "hard wired", but provides a testbed for implementing matchers consis-
tent with Gentner's Structure-Mapping theory. In addition to analogy, SME can be used to simulate
the other comparisons sanctioned by the Structure-Mapping theory. Such matchers may also serve
a valuable role in reasoning or learning programs. For example, given the descriptions of water
flow and heat flow shown in Figure 2, SHE would offer several alternative interpretations for this
potential analogy. In one interpretation, the central inference is that water flowing from the beaker
to the vial corresponds to heat flowing from the coffee to the ice cube. Alternatively, one could
map water to coffee, since they are both liquids. This is an interpretation provided by SME, but
with a lower evaluation score. A learning system could use the structural evaluation to select the
explanation most likely intended by the human teacher.

This section describes the SHE algorithm in sufficient detail to allow replication. We start by
defining some simple conventions for knowledge representation, since these conventions are essential

to understanding the algorithm.
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3.1 Representation conventions

We make as few representational assumptions as possible so that SME remains domain-independent.
However, a few conventions are necessary. We use a typed (higher-order, in the standard sense)

predicate calculus to represent facts. The constructs of this language are:

Entities: Individuals and constants.

Predicates: There are three types: functions, attributes, and relations. Each is described below.

Dgroup: A description group is a collection of entities and facts about them, considered as a unit.

We examine each construct in turn.

3.1.1 Entities

Entities are logical individuals, i.e., the objects and constants of a domain. Typical entities include
physical objects, their temperature, and the substance they are made of. Primitive entities are
declared with the defEntity form:

(defEntity (name)
[:type (EntityType)]

[:constant? {t I nil}) )

Since our language is typed, each entity type can be declared as a subtype of an existing type
using the :type option. For example, we might have

(defEntity star :type inanimate)
(defEntity Sun :type star)

to say that stars are inanimate objects, and our Sun is a particular star. Constants are declared3 by using the :constant? option, as in

(defEntity zero :type number :constant? t)

3.1.2 Predicates

AWe first describe the three types of predicates, and then show how they are declared.

Functions Functions map one or more entities into another entity or constant. For example,
(PRESSURE piston) maps the physical object piston into the quantity which describes its
pressure. We treat functions whose range are truth values as relations (see below), rather than
functions. Consequently, Structure-Mapping treats functions differently from other types of
predicates. It allows substitution of functions to acknowledge their role as an indirect way of
referring to entities.

Attributes An attribute describes some property of an entity. Examples of attributes include RED
and CIRCLE. It is well-known that a combination of a function and a constant is logically
equivalent to an attribute. For example,

"z, ". -. "'".-- -".-'. -.-". '.( " " ,'.,- ,, ,.'. ".,'. " ". " . .. ".. ", "4 " " " ." " ". "- ". ." -"," ,• ' :e
"

" - , " , ".
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(RED BlockA)
(- (COLOR BlockA) RED)

and

'C. (SQUARE BlockA)
-(- (SHAPE BlockA) SQUARE)

are logically equivalent. However, these two forms do not behave identically under Structure-
Mapping. We assume that a reasoner has a particular piece of attribute information rep-
resented in one form or another, but not both, at any particular time (We defer detailed
discussion of this issue until Section 6.1).

Relations Like attributes, relations range over truth values. However, the arguments to rela-
tions can be other predicates as well as entities. Examples of relations include CAUSE and

GREATER-THAN.

The deiPredicate form declares predicates. It has several options, due in part to the existence
of several types of predicates:

(defPredicate (Name) (ArgumentDeclarations) (PredicateType)
: expression-type (DefinedType)
[:commutative? {t I nil)]

[:lexpr? {t I nil}] )

(PredicateType) is either function, attribute, or relation, according to what kind of predicate
(Name) is. The (ArgumentDeclarations) allows the arguments to be named and typed. For
example, the declaration:

(defPredicate CAUSE ((antecedent event) (consequent event)) relation)

states that CAUSE is a two-place relational predicate. Its arguments are called antecedent and
consequent, both of type event. The names and types of arguments are for the convenience of the
representation builder, and are not currently used by SME. However, the type of predicate is very
important to the algorithms, as we will see below.

The optional declarations :commutative? and : lexpr? provide SME with important syntactic
information. : commutative? indicates that the predicate is commutative, and thus the order of
arguments is unimportant when matching. : lexpr? indicates that the predicate can take any
number of arguments3 . Examples of commutative lexpr predicates include AND, OR, and SUM.

3 The term derives from early lisp dialects which classified functions that took an arbitrary number of arguments
as iexprs.

.I%
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3.1.3 Facts and Dgroups

For simplicity, predicate instances are called facts. Notice we include terms corresponding to
function applications as facts. The reason is that in discussing SME's operation we will often need
to refer to them by a short name. We call the predicate of the fact its functor.

A Description Group, or Dgroup, is a collection of primitive entities and facts concerning them.
Dgroups are defined with the defDescription form:

(defDescription (DescriptionName)
entities ((Entityl ), (Entity2 ) .... , (Entityj))
facts ((FactDeclarations)))

where (FactDeclarations) take the form

(fact) or
((fact) :name (FactName))

For example, the description of water flow depicted in Figure 2 was given to SME as

(defDescription simple-water-flow
entities (water beaker vial pipe)
facts (((flow beaker vial water pipe) :name wflow)

((pressure beaker) :name pressure-beaker)
((pressure vial) :name pressure-vial)
((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial)) :name >diameter)
((cause >pressure wflow) :name cause-flow)

(flat-top water)

(liquid water)))

In addition, the description of heat flow depicted in Figure 2 was given to SME as

(defDescription simple-heat-flow

entities (coffee ice-cube bar heat)
facts (((flow coffee ice-cube heat bar) :name hflow)

((temperature coffee) :name temp-coffee)
((temperature ice-cube) :name temp-ice-cube)
((greater temp-coffee temp-ice-cube) :name >temperature)

(flat-top coffee)
(liquid coffee)))

Notice that each fact does not need to be declared separately; SME will automatically create andL name facts corresponding to (diameter beaker) and (diameter vial).
We will refer to the facts and entities in a dgroup collectively as items. To describe the SME

algorithm we need some terminology to express the structural relations between items. These
expressions are rooted directed acyclic graphs, so we adopt standard graph-theory terminology.

First, the offspring of a fact are its arguments. Entities have no offspring. An item 1 which is in
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the transitive closure (arguments of arguments, etc.) of another item 2 is said to be a descendant
of 12, while 12 is said to be an ancestor of .11. An item with no ancestors is called a root. The
term Tree(I) refers to the subtree starting at 1. Notice that in Structure-Mapping the order of a
predicate is inversely proportional to its depth.

3.2 The SME Algorithm: Overview

Given descriptions of a base and a target, represented as Dgroups, SHE builds all structurally
consistent interpretations of the comparison between them. Each interpretation of the match is
called a global mapping, or Gmapi . Gmaps consist of three parts:

1. A Global Match: A set of pairwise matches between the facts and entities of the two Dgroups.

2. Candidate Inferences: A set of new facts which the comparison suggests holds in the target
Dgroup.

3. A numerical evaluation score based on the Gmap's structural properties.

Following the Structure-Mapping theory, only purely structural criteria are used to construct
and evaluate the mappings. SHE has no other knowledge of either base or target domain. Neither
rules of inference nor even logical connectives themselves are "wired in" to the algorithm. Each
candidate inference must be interpreted as a surmise, rather than a valid conclusion. The evaluation
score reflects the aesthetics of the particular type of comparison, not validity or potential usefulness.
Testing the validity of candidate inferences and determining the utility of a match are left to other
modules, as described in Section 2. This decomposition leads to strikingly good computational
performance - better than algorithms which use additional criteria, as we argue below in Section
5.

Match rules specify what pairwise matches are possible and provide local measures of evidence
used in computing the evaluation score. These rules are the key to SHE's flexibility. To build a
new matcher one simply loads a new set of match rules. This has several important advantages.
First, we can simulate all of the types of comparisons sanctioned by Structure-Mapping theory
with one program. Second, we could in theory "tune" the rules if needed to simulate particular
kinds of human performance (although, importantly, this flexibility has not been needed so far!).
Third, we can also simulate certain other analogy systems (including [35,651, as described below) for
comparison purposes. In our experiments using SME, we currently use three rule sets, depending on
the phenomenon being investigated. One set of rules focuses on object descriptions and is called the
mere-appearance rules In addition, the analogy rule set prefers relations, while the literal similarity
rules look at both relations and object descriptions. Because the literal similarity rules are the
most inclusive, we will be using them in this section to explain the system. Subsequent examples
will then focus on analogy matches.

The SME algorithm ib- logically divided into four stages.

I. Local match construction Finds all pairs of ((Baseltem), (TargetItem) ) that potentially can
match A Match Hypothesis is created for each such pair to represent the possibility that this
local match is part of a global match

'The definition of Gmap is inspired in part by de Kleer's work on Asumption-based Truth Maintenance, although
we do not use an ATMS in the actual code. The idea of combining local solutions by constructing maximally consistent
sets is analogous to the process of interpretation conitruction in an ATMS. As explained below, we also find bit-vectors
a useful implementation technique for carrying out set operations needed to maintain structural consistency.

j. .'.-W
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2. Gmap construction: Combines the local matches into maximal consistent collections of cor-
respondences.

3. Candidate inference construction: Derives the inferences suggested by each Gmap.

4. Match Evaluation: Attaches evidence to each local match and uses this evidence to compute
structural evaluation scores for each Gmap.

We now describe each computation in detail, using a simple example to illustrate their operation.

3.2.1 Step 1: Local match construction

Given two dgroups, SME begins by finding potential matches between items in the base and target
(see Figure 3). What can match is specified by match constructor rules, which take the form:

(MHCrule ((Trigger) (?BaseVariable) (?TargetVariable)
( )[:test (TestForm)])
(Body))

There are two types of constructor rules, each indicated by a different value for (Trigger). The
first type of rule is indicated by a : filter trigger. These rules are applied to each pair of base and
target facts, executing the code in (Body). If the :test option is used, (TestForm) must return
true for the body to be run. For example, to state that a fact in the base may match a fact in the
target whose functor is identical, we write:

(MHCrule (:filter ?b ?t :test (equal (fact-functor ?b)

(fact-functor ?t)))
(install-MH ?b ?t))

The second type of rule is indicated by a trigger of : intern. These rules are run on each
match hypothesis as it is created. Typically they create match hypotheses between any functions
or entities which are the arguments of the facts joined by the match hypothesis that triggered the
rule.

Currently we use three sets of rules, one for analogy, one for literal similarity, and one for mere
appearance matches. The current literal similarity rule set uses only three match constructor rules.
One rule is the filter rule shown above. The other two are intern rules, listed in Appendix A. The
content of the first intern rule is, roughly,

"If the match hypothesis concerns two facts, then create a match hypothesis between
any corresponding arguments that are both functions or entities."

The second intern rule is a specialization of the first that runs only on commutative predicates
(i.e., the "corresponding arguments" condition is removed). The filter rule suffices to build match
hypotheses between facts; the intern rules introduce the match hypotheses between entities and
functions sanctioned by these fact matches.

The rules for the other types of comparisons are similar. The analogy rules only create matches
between attributes when they are part of some higher-order structure. The mere appearance rule
set completely ignores higher-order structure. All three rule sets are listed in Appendix A.
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!, /--.. -.-.

0 - MH between predicates
A - NO between entities (Emap)

Figure 3: Local Match Construction. The water flow and heat flow descriptions of Figure 2 have
been drawn in the abstract and placed to the left and right, respectively. The objects in the middle

depict match hypotheses.

We will need some conventions for talking about match hypotheses. We denote the hypothesis
that b, and tj match by MH(b,, tj). When no ambiguity will result, we will simply say MH. The
match hypotheses for a particular run of SME form a directed acyclic graph, with possibly many
roots. We will use the same terminology to refer to the structural properties of graphs of match
hypotheses (offspring, descendants, ancwtors, root) as we use for describing items in Dgroups.

Example: Simple analogy between heat and water In this example we will use the literal
similarity rule set, rather than true analogy, in order to better illustrate a variety of details of the

algorithm. The result of running these rules on the water flow and heat flow dgroups of Figure 2 is
shown in Figure 3 (see also Figure 4). Each match hypothesis locally pairs an item from the base
dgroup with an item from the target dgroup.

There are several important things to notice in Figure 4. First, there can be more than one
match hypothesis involving any particular base or target item. Here, TEMPERATURE can match with
both DIAMETER and PRESSURE, since there are corresponding matches between the GREATER-THAN
facts in both dgroups. Second, note that, with the exception of functions, predicates must match
identically. Entities, on the other hand, are matched on the basis of their roles in the predicate
structure. Thus while TEMPERATURE can match either PRESSURE or DIAMETER, IMPLIES cannot
match anything but IMPLIES. This distinction reflects the fact that functions are often used to
refer to objects and other types of entities, which are fair game for substitution under analogy.
Third, not every possible correspondence is created. We do not, for example, attempt to match
TEMPERATURE with water or heat with beaker. Local matches between entities are only created

%I
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WATER FLOW HEAT FLOW

Cause
0 r~te~_ V'0.79

Grete Flow Flow

Z\ 0.65

Pressure Pressure .1Greater

0.6Temp Temp,

Grae 0.7 0.7

Diameter Diamete

Liquid 0.79 Liquid

Flat-Top 0.79 Flat-Top

beaker 0.93 coffee

water 0 heat

vial 0ice cube
pipe bar

Figure 4: Water Flow / Heat Flow Analogy After Local Match Construction. The lines connecting
water flow and heat flow items depict match hypotheses. Match hypotheses between entities are
called Emaps (e.g., the link between beaker and coffee). Match hypotheses which are not descended
from others are called roots (e.g., the links between the GREATER predicates and the link for the
predicate FLOW). Each mapping receives a local evaluation score during subsequent processing, as

Ldescribed below

ILi
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when justified by some other identity. This significantly constrains the number of possible matches
in the typical case.

3.2.2 Step 2: Global Match Construction

The second step in the SNE algorithm combines local match hypotheses into collections of global
matches (Gmaps). Intuitively, each global match is the largest possible set of match hypotheses
that depend on the same one to one object correspondences.

More formally, Gmaps consist of maximal, structurally consistent collections of match hypothe-
ses. A collection of match hypotheses is structurally consistent if it satisfies two criteria:

1. Preservation: No two match hypotheses assign the same base item to multiple target items
or any target item to multiple base items.

2. Grounding: If a match hypothesis MH is in the collection, then so are the match hypotheses
which pair up all of the arguments of MH's base and target items.

The preservation criteria enforces strict one to one mappings. The grounding criteria preserves
connected predicate structure. A collection is maximal if adding any additional match hypothesis
would render the collection structurally inconsistent.

Requiring structural consistency both reduces the number of possible global collections and helps
preserve the soundness and plausibility of the candidate inferences. Without it, every collection
of local matches would need to be considered, wasting much effort on degenerate many-to-one
mappings without any possible inferential value. The maximality condition also reduces the number
of Gmaps, since otherwise every subset of a Gmap could itself be a Gmap.

The formation of global matches is composed of two primary stages:

1. Compute consistency relationships: Here we generate for each match hypothesis the sets of
entity mappings it entails, what match hypotheses it locally conflicts with, and which match
hypotheses it is structurally inconsistent with. This information simplifies the detection of
contradictory sets of match hypotheses, a critical operation in the rest of the algorithm.

2. Merge match hypotheses: Compute Gmaps by successively combining match hypotheses as
follows:

(a) Form initial combinations: Combine interconnected and consistent match hypotheses
into an initial set of Gmaps.

(b) Combine 'dependent Gmaps: Since base and target dgroups are rarely isomorphic, some
Gmaps in the initial set will overlap in ways that allow them to be merged. The advan-
tage in merging them is that the new combination may provide structural support for
candidate inferences.

(c) Combine independent collections: The results of the previous step are next combined to
form maximal consistent collections.

Importantly, the process of Gmap construction is completely independent of Gmap evaluation.
Which Gmaps are constructed depends solely on structural consistency. Numerical evidence is used
only as a source of information to compare the relative merits of Gmaps.

We now describe the algorithm in detail.
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Computing consistency relationships Consistency checking is the crux of Gmap construc-
tion. Therefore we begin by defining several sets which represent, for each match hypothesis, which
entity mappings it entails and which other hypotheses it is inconsistent with. Consider a particularSa
match hypothesis MH(b,,t 3 ) involving base item bi and target item t,. If bi, t, are facts, then by
the grounding criteria the match hypotheses linking their arguments must also be in any collection
that MH(bi, t,) is in. Applying this criteria recursively, we see that the match hypotheses indi-
rectly mentioned by MH(bi, t,) form a tree-like graph which "bottoms out" with match hypotheses
involving primitive entities since they have no arguments (see Figure 5). This allows us to know
what entity pairings a particular match hypothesis depends on:

Definition 1. An Emap is a match hypothesis between primitive entities. By recursive ap-
plication of the grounding criteria, it can be seen that each match hypothesis implies a specific
set of entity correspondences. Call the set of Emape implied by a match hypothesis MH(b,, t,)
Emaps(MH(b,, t,)). Emaps(MH(b,, t,)) is simply the union of the Emaps supported by MH(bi, t,)'s
descendants.

The preservation criteria enforces a strict one-to-one mapping. We must also associate with
each MH(b,, t,) the set of match hypotheses which conflict with it. The most obvious conflicts are
those match hypotheses which provide alternate mappings for bi and t,.

Definition 2. Given a match hypothesis MH(bi,t,), the set Conflicting (MH(b, t,)) consists of
the set of match hypotheses which represent the alternate mappings for bi and t1 :

Conflicting(MH(b,, tj)) U (MH(bh, t,) I bk # b,) U
bj Ebase

U {MH(bi, tk) I tk 9 t7 }
li Etargd

The set Conflicting(MH(bi, tj)) only notes local inconsistencies. However, we can use it and
Emapa(MH(b,, t,)) to define a NoGood set which contains all match hypotheses that can never be
in the same Gmap as MH(b,,t,).

Definition 3. The NoGood set for a match hypothesis, MH,, defines the set of match hypotheses
which can never appear in the same Gmap as MH. This set is the union of MH,'s Conflicting set
with the NoGood sets for all of its descendents. If MH, is an Emap, then the NoGood set collapses
into equalling its Conflicting set.

NoGood(MH,) = Conflictsng(MH,) u U NoGood(MH,)
MH, E Args(4MH,

The algorithm computes Conflicting, Emaps, and NoGood sets as follows. First, Conflicting
is computed for each match hypothesis, since it requires only local information. Second, Emaps
and NoGood are computed for each Emap. Third, Emaps and NoGood sets are computed for all

'P. other match hypotheses by propagating the results from Emaps upwards to those match hypotheses
which mention them.

Two observations should be made about this computation. First, these operations can be
efficiently implemented via bit vectors. For example, SME assigns a unique bit position to each

% % pot%
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Water Flow eat Flow'

* - \ between predicates

- M between entities (Er-ap)

Figure 5: Water Flow - Heat Flow analogy after computation of Conflicting relationships. Simple
* lines show the tree-like graph that the grounding criteria imposes upon match hypotheses. Lines

with circular endpoints indicate the Conflicting relationships between matches. Some of the original
lines from MH construction have been left in to show the source of a few Conflicting relations.

match hypothesis, and carries out union and intersection operations by using OR and AnD. Second,
it is important to look for justification holes in the match hypothesis trees - match hypotheses
whose arguments fail to match. Such match hypotheses will always fail the grounding criteria, and

hence should be removed. For example, if one of the PRESSURE - TEMPERATURE match hypotheses
had not been formed (see Figure 4), then the match between their governing GREATER predicates
would be removed. Notice that removing justification holes eliminates many blatantly incorrect
matches, such as trying to place an eighth-order IMPLIES in correspondence with a second-order
IMPLIES.

The next step in Gmap construction is to identify those match hypotheses which are internally
inconsistent, and thus cannot be part of any Gmap.

Definition 4. A match hypothesis is Inconsistent if the Emaps of one subtree of its descendants
conflicts with the Emaps entailed by another subtree of its descendants:

Inconsistent(MHi) if Emaps(MH,) r) NoGood(MH,) * 0

With the above information, SME can easily identify what combinations of match hypotheses are
inconsistent. Furthermore, some match hypotheses can be identified as internally inconsistent, since

it is possible for the descendants of a match hypothesis to have mutually incompatible bindings
Global match construction then proceeds by collecting sets of consistent match hypotheses. The
maximality requirement on Gmaps suggests organizing the computation top-down, rather than

U
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bottom-up. Call a match hypothesis which is not the descendant of any other match hypothesis a
root. If a root is consistent, then the entire structure under it is consistent and may form an initial

Gmap. However, base and target dgroups are rarely isomorphic, so several merge steps are also
required. The next sections describe the procedure in detail.

Merge Step 1: Form initial combinations. The first step is to combine interconnected and
consistent structures (Figure 6a). In the simplest case, the entire collection of descendants of
a root may be collected together to form a globally consistent match. However, if the root is
not consistent, then the same procedure is applied recursively to each descendant (i.e., each
immediate descendant is now considered as a root). This effectively removes inconsistent
match hypotheses from further consideration. The resulting set will be called Gmapsi. The
procedure is:

1. Let Gmaps, =0.

2. For every root MH(bi, tj)

(a) If -,Inconsiatent(MH(b, t1 )), then create a Gmap GM such that
Elements(GM) = Tree(MH(b,, ti)).

(b) If Inconsistent(MH(b,,t,)), then recurse on Offspring (MH (b,,tj)).

3. For every GM E Gmapsi,
(a) NoGood(GM) = UMH(b,,tj)ERoot,(cMfVoGood(MH(bi, t,))

(b) Emaps(GM) = UMH(b,,t)C-it#O(GmFmaps(MH(bi, tj))

At this stage inconsistent match hypotheses have been completely eliminated. If the base and
target Dgroups had only a single root, the next two stages would have no effect. However, things
are rarely that simple. Typically, elements of Gmaps that are consistent with one another must
be merged to provide maximality. Consistency between two GMaps is defined as:

Consist cnt(G Map1 u l iff Elementa(GMap) n NoGood(GMap,) 0

eAGMap) A NoGood(GMap) n Elements(GMapj) = 0

Merge Step 2: Combine dependent but unconnected Gmaps. Because the target may lack
Psome of the higher-order relations that exist in the base, two or more Gmaps from Gmaps,

may be part of the same base structure. This step forms Gmaps2 by merging all members of
Gmaps, that share common base structure and that are consistent (Figure 6b). This puts all
match hypotheses with shared base structure together. When candidate inferences are added
to the Gmap, they will fill in the missing base structure.

Merge Step 3: Combine independent collections. Any two elements of Grnaps2 which have
overlapping base structure cannot consistently be merged, since if they could be then the
previous step would have merged them. However, elements of Gmaps2 which do not con-
tain overlapping structure can be consistently merged, since they are independent from the

perspective of structural consistency. This final step generates all consistent combinations of
Gmaps from Gmaps2 by successive unions, keeping only those combinations that are maximal
(Figure 6c).

L',
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4....3 4 3

2 2

(a) (b) (c)

- between predicates

- h between entities (Emap)

Figure 6: GMap Construction. (a) Merge step 1: Interconnected and consistent. (b) Merge step
2: Consistent members of the same base structure. (c) Merge step 3: Any further consistent
combinations.

Example: Simple analogy between heat and water Figure 6 shows how the Gmaps are
formed for the simple water flow / heat flow example. Recall that so far all we have is a large
collection of match hypotheses, each representing a local pairing of an item from the base and an
item from the target which could be part of a larger match. After merge step 1, only isolated
collections exist. Merge step 2 combines the PRESSURE to TEMPERATURE mapping with the FLOW
mapping. Finally, merge step 3 combines the isolated water and coffee attributes (see also Fig-
ure 7). Notice that the FLOW mapping is structurally consistent with the DIAMETER to TEMPERATURE
mapping. However, because merge step 2 placed the FLOW mapping into the same Gmap as the
PRESSURE to TEMPERATURE mapping, merge step 3 was unable to combine the FLOW mapping with
the DIAMETER to TEMPERATURE Gmap.

3.2.3 Step 3: Compute Candidate Inferences

Each Gmap represents a set of correspondences that can serve as an interpretation of the match.
For new knowledge to be generated about the target, there must be information from the base which
can be "carried over" into the target. Not just any information can be carried over - it must be
consistent with the substitutions imposed by the Gmap, and it must be structurally grounded in

*! the Gmap. By structural grounding, we mean that its subexpressions must at some point intersect
the base information belonging to the Gmap. Such structures form the candidate inferences of a
Gmap.

Recall that Structure-Mapping does not guarantee that any candidate inference is valid. Each

m %
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candidate inference is only a surmise, which must be tested by other means. SME does guarantee that
candidate inferences are structurally consistent and grounded. Aside from some simple structural
consistency tests, mentioned below, SME uses no other rules of inference, or any other source of
knowledge outside the language description and the base and target dgroups to evaluate a match.
By theoretical assumption, such validity-checking is the province of other modules which use SME's
output.5

To compute the candidate inferences for a Gmap GM, SME begins by examining each root
BR in the base Dgroup to see if it is an ancestor of any base facts in the Gmap. If it is, then any
elements in Deseendants(Bp) which are not in Baseltems(GM) are included in the set of candidate
inferences. A weak consistency check is performed by verifying that new, noncommutative facts are
not commuted versions of existing facts. For example, if (GREATER (MASS sun) (MASS planet))
existed in the target, (GREATER (MASS planet) (MASS sun)) would be an inconsistent candidate
inference.

The candidate inferences often include entities. Whenever possible, SHE replaces all occurrences
of base entities with their corresponding target entities. Sometimes, however, thk're will be base
entities that have no corresponding target entity; i.e., the base entity is not part of any match
hypothesis for that Gmap. What SHE does depends on the type of entity. If the base entity is a
constant, such as zero, it is brought directly into the target unchanged. Otherwise, SME introduces
a new, hypothetical entity into the target which is represented as a skolem function of the original
base entity. Such entities are represented as (*skolem* base-entity).

Example: Simple analogy between heat and water We return now to our extended exam-
ple. In Figure 7, Gmap #1 has the top level CAUSE predicate as its sole candidate inference. In
other words, this Gmap suggests that the cause of the flow in the heat dgroup is the difference in
temperatures.

Suppose the FLOW predicate was missing in the target Dgroup. Then the candidate inferences
for a Gmap corresponding to the pressure inequality would be both CAUSE and FLOW, as well as
conjectured target entities corresponding to water (heat) and pipe (bar). The two skolemized
entities would be required because the match for the predicate FLOW is what provides a match from
water and pipe to heat and bar. Note that GREATER-THAN[DIAMETER(coffee), DIAMETER(ice
cube)] is not a valid candidate inference for the first Gmap because it does not intersect the
existing Gmap structure.

3.2.4 Step 4: Compute Structural Evaluation Scores

Typically a particular pair of base and target will give rise to several Gmaps, each representing a
different interpretation of the match. Often it is desired to select only a single Gmap, for example
to represent the best interpretation of an analogy. Many of these evaluation criteria (including
validity, usefulness, and so forth) lie outside the province of Structure-Mapping, and rely heavily
on the domain and application. However, one important component of evaluation is structural -

for example, one Gmap may be considered a better analogy than another if it embodies a more
systematic match. SME provides a programmable mechanism for computing a structural evaluation
score (SES) for each Gmap. This score can be used to rank-order the Gmaps in selecting the "best"
analogy, or as a factor in a more complex (but external) evaluation procedure.

'One such module is described in [13,141.

~ii.
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Rule File: literal-similarity.rules Number of Match Hypotheses: 14

Gmap #1: { (>PRESSURE >TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)
(PRESSURE-VIAL TEMP-ICE-CUBE) (WFLOW HFLOW) }

Emaps: { (beaker coffee) (vial ice-cube) (water heat) (pipe bar)
Weight: 5.99
Candidate Inferences: (CAUSE >TEMPERATURE HFLOW)

Gmap #2: { (>DIAMETER >TEMPERATURE) (DIAMETER-i TEMP-COFFEE)
(DIAMETER-2 TEXP-ICE-CUBE) I

Emaps: { (beaker coffee) (vial ice-cube) }
Weight: 3.94
Candidate Inferences: { }

Gmap #3: ( (LIQUID-3 LIQUID-S) (FLAT-TOP-4 FLAT-TOP-6) }
Emaps: { (water coffee) }
Weight: 2.44
Candidate Inferences: { }

Figure 7: Complete SME interpretation of Water Flow - Heat Flow Analogy.

The structural evaluation score is computed in two phases. First, each match hypothesis is
* assigned some local degree of evidence, independently of what Gmaps it belongs to. Second,

the score for each Gmap is computed based on the evidence for its match hypotheses and the
structural properties of the Gmap itself (such as the number and kind of candidate inferences). We
will first introduce the general evidence processing architecture, followed by a description of how
the structural evaluation scores are computed.

The scoring of matches is programmable: evidence for or against each aspect of the match
is found by running match evidence rules and combining their results. These rules are similar
syntactically to the match constructor rules "d provide evidence scores for a match in the form of
a probabilistic weight ranging between 0 and 1. Using rules to provide evidence greatly increases
SME's programmability. Importantly, these evidence scores do not rely on any probabilistic or
evidential information about the base or target per se. As we describe below, we currently are
using the Dempster-Shafer formalism. However, our algorithms are independent of the details of
Dempster-Shafer, and should work with any formalism for combining evidence.

The management of evidence rules is performed by a Belief Maintenance System (BMS) [12).
A BMS is a form of Truth-Maintenance system, extended to handle numerical weights for evidence
and degree of belief. In SME, a BMS node is associated with every match hypothesis and Gmap.
BMS justifications are Horn clauses, annotated with evidential weights. If the system knows that
belief in item, is dependent in some way upon belief in item2, then it automatically modifies belief
in item, whenever new information causes a change in belief of item2. In the limiting case of
evidential weights of only 1 and 0 (i.e., true and false), the BMS behavior reduces to that of a
standard justification-based TMS.

The current BMS implementation uses the Dempster-Shafer formalism for belief and combines

4W
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evidence with a simplified form of Dempster's rule of combination [54,48,33,121. Using a modified
form of Shafer's representation, we express the belief in some proposition by the pair (s(A), s(-'
A)), where s (A) represents the current amount of support for A and s (- A) is the current support
against A. Dempster's rule provides a means for combining evidence based upon different sources
of information. Thus, given that Belief (A)- (O. 4, 0) and Belief (B).-(0. , 0), together with
(IMPLIES A C)(o.s,o) and (IMPLIES B C)(1,0), Dempster's rule provides a belief in C equal to (0.728,
0.0).

Pattern-directed rules are provided that trigger on certain events in the knowledge base (e.g.,

[45,6]). The rules are of the form:

(rule ((NestedTriggers)) (Bod!y))

where a nested-trigger is of the form

A ((Trigger) (Pattern) [:test (TestForm)])

For example, the rule

(rule ((:intern (bird ?x)))
(assert! (implies (bird ?x) (flies ?x) (0.90 . 0.05))))

causes the implication "if Fido is a bird, then there is a 90 to 95% probability that Fido can fly" to
be asserted when (bird Fido) first appears in the knowledge base (whether it is believed or not).
Notice that the rule system automatically converts the implies statement into a Horn clause; such
translations will automatically be performed on all compositions of implies, and, or, and not.

We now describe the two phases for computing structural evaluation scores.

Assigning local evidence The local evidence for each match hypothesis is found by running
the match evidence rules and combining their results. The rules trigger on various properties
of a match hypothesis and provide evidence for or against it based upon those properties. In
addition to providing direct evidence for a match hypothesis, the rules can also assert relationships
between evidence for different hypotheses. For example, the systematicity preference for analogy is
implemented by a rule that propagates belief in a match hypothesis to its offspring, thus increasing
the evidence for Emaps that provide structural ground for a large systematic structure. All evidence
is combined by asserting such relationships.

Let us consider some analogy evidence rules for concreteness. A match hypothesis involving
1two facts looks plausible if the predicates are the same, if the facts are of similar order in the base

and target dgroups, and if their arguments can potentially match. A match hypothesis involving
two facts appears implausible if the predicates are relations and their names are different or if the

' - difference in their order is greater than one. For modularity, we separate each criteria into distinct
rules. For example,

(assert! 'same-functor)

(rule ((:intern (MH ?b ?t) :test (and (fact? ?b) (fact? ?t)
(eq (fact-functor ?b)

(fact-functor ?t)))))
(assert! (implies same-functor (MM ?b ?t) (0.5 . 0.0))))
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states that "if the base item and target item are facts with the same functors, then supply 0.5
evidence in favor of the match hypothesis." A strong preference for systematicity is expressed by
the local evidence rule:

(rule ((:intern (NH ?bl ?tl))
(:intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?bi ?tl)))

(assert! (implies (MH ?bl ?tl) (MH ?b2 ?t2) (0.8 . 0.0))))

which propagates 80% of a match hypothesis' belief to its offspring. As a result, the more matched
structure that exists above a given match hypothesis, the more that hypothesis will be believed.
Thus this "trickle down" effect provides a local encoding of the systematicity principle.

Computing the global Structural Evaluation Score Clearly an important factor in a Gmap's
score is the evidence for the match hypotheses which participate in it. However, there are a num-
ber of other factors that are potentially relevant as well. Such factors include the number and
size of connected components, the existence and structure of the candidate inferences, and other
graph-theoretic properties of the Gmap.

We suspect that different factors will be relevant for different applications, and for modeling the
different "analogical styles" of human subjects. Consequently, evidence rules are used to compute
the evidence for Gmaps as well, to provide maximum flexibility. In this paper, we use only the
following evidence rule for Gmaps:

(rule ((:intern (GMAP ?gmap)))
(dolist (?mh (gmap-elements ?gmap))

(assert! (implies ?mh (GMAP ?gmap)))))

which states that the belief of each match hypothesis is added to the belief of the Gmaps it is a
member of. We have found this simple rule to be sufficient for all of the examples encountered
so far, and so have not yet addressed the issue of evidence due to candidate inferences or graph
theoretic structure.

Although the evidence for match hypotheses is constrained to be between 0 and 1, we do not
normalize the evidence for Gmaps in the same way. Instead, we simply take as evidence for the
Gmap the sum of the evidence for its match hypotheses 6 . Originally we combined evidence for
Gmaps according to Dempster's rule, so that the sum of beliefs for all the Gmaps equal 1 [15].
We discovered two problems with this scheme. First, Dempster's rule is particularly susceptible to
roundoff problems (i.e., unstable). Second, normalizing Gmap evidence prevents us from comparing
matches using different base domains (as one would want to do for access experiments), since the
score would be a function of the other Gmaps for a particular base and target pair. Under the
current scheme, the evidence score can be used to compare matches of different base descriptions
with the same target domain. However, it still cannot be used to compare two completely different
analogies (i.e., different base, different target).7

GThe BMS allows one to declare certain forms, such as (GMAP "gmap), for special treatment. Thus, while the

syntax of the Gmap evidence rule looks the same as the NM evidence rules (i.e., the use of IMPLIES), evidence is
combined by addition rather than Dempster's rule.

7 One of our current research goals is the construction of a structural evaluator that would produce scores cor-
responding to a single, fixed scale. With this evaluator, SME would then be able to rate two completely different
similarity matches as being equally good, regardless of how different their drmain descriptions were in size.

F_
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The BMS justifications provide a valuable tool for exploring the consequences of evidence rules.
By using interrogatives similar to those in truth-maintenance systems, one can get a clear picture
of how the evidence rules are combining to produce the observed results. For example, the belief of
(0.712, 0.0) in the match hypothesis between PRESSURE and TEMPERATURE (Figure 4) is explained
by the BMS as follows:

C:J (MH PRESSURE-BEAKER TEMP-COFFEE) has evidence (0.712, 0.0) due to
IMPLICATION((MH >PRESSURE >TEMPERATURE)) (0.52, 0.0)r IMPLICATION (CHILDREN-POTENTIAL) (0.4, 0.0)

We suspect that the ability to "tune" the criteria for choosing a Gmap will be important for
modeling individual differences in analogical style and a subject's domain knowledge. For example,
a conservative strategy might favor taking Gmaps with some candidate inferences but not too many,
in order to maximize the probability of being correct.

Although the match and evidence rules are programmable, it is important to note that all of
the examples given in this paper use the same set of analogy rules, unless otherwise specified. In
addition, the only other rules we have ever used are the literal similarity and mere-appearance rule
sets. No "example-dependent" modifications have been performed to produce better results on any
particular example.

Example: Simple analogy between heat and water Returning to Figure 7, note that the
"strongest" interpretation (i.e., the one which has the highest structural evaluation score) is the

, one we would intuitively expect. In other words, beaker maps to coffee, vial maps to ice-cube,
water maps to heat, pipe maps to bar, and PRESSURE maps to TEMPERATURE. Furthermore, we
have the candidate inference that the temperature difference is what causes the flow.

V4 3.3 Analysis

Here we review the SME algorithm and analyze its complexity. The algorithm is not straightforward,
and depends critically on the particular data and match rules it is given. Consequently, we focus on
identifying best-case and worst-case bounds as well as the factors which critically affect performance.

The algorithm is summarized in Figure 8. Referring back to our extended water flow / heat flow
example, SME first hypothesized local matches between individual facts and entities. The resulting
matches, shown in Figure 4, were then combined to form Gmaps. The three-step merging process,
shown in Figure 6, produced the set of global mappings shown in Figure 7. The set of candidate
inferences and a structural evaluation score was also created for each Gmap.

We use the following notation in the complexity analysis:

Eb Number of entities in the base dgroup.

Number of entities in the target dgroup.

b Number of facts in the base dgroup.

= Number of facts in the target dgroup.

I J4=a Number of match hypotheses.

,% %
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" Run MHC rules to construct match hypotheses.

" Calculate the Conflicting set for each match hypothesis.

" Calculate the EMaps and NoGood sets for each match hypothesis by upward
propagation from entity mappings.

" During the propagation, delete any match hypotheses that have justification holes.

" Merge match hypotheses into Gmaps.

1. Interconnected and consistent.

2. Consistent members of same base structure.

3. Any further consistent combinations.

" Calculate the candidate inferences for each Gap.

" Score the matches

1. Local match scores.

2. Global structural evaluation scores.

Figure 8: Summary of SME algorithm.

-- Number of Gmaps

N Nb+Nt
2

3.3.1 Analysis of local match construction

The number of match rules is small, and hence largely irrelevant. The filter rules are run for
each pair of base and target predicates. Consequently, they will always require O(Nb * Nt). The
:intern rules are run once on each match hypothesis. In the worst case, M = N * Nt, or roughly
N2 . But in practice, the actual number of match hypotheses is substantially less, usually on the
order of cN, where c is less than 5 and N is the average of Nb and Nt. Thus, in practice, : intern
rules have a run time of approximately 0 (N).

3.3.2 Analysis of Conflicting calculation

Recall that SME assigns a Conflicting set to each match hypothesis, MH(bi,t)) which represents
the alternate mappings for bi and tj. The conflicting sets are calculated by examining the match
hypotheses each base item appears in and the match hypotheses each target item appears in. Let C

be the average number of alternative matches each item in the base and target appears in. SME loops
through the C match hypotheses twice: once to form the bitwise union of these match hypotheses
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and once to update each hypotheses' Conflicting set. Thus, the entire number of operations is

S* 2C) + (4* 2C) + (7 * 2C) + (&, * 2C)

The worst case is when a match hypothesis is created between every base and target item. If
we also assume Nb = Nt, then C = Nt in that case. The number of operations becomes 4N,2

or approximately O(N 2 ). Conversely, the best case performance occurs when C is 1, producing
0 (max(Nb, Nt)) operations. In our experiments so far, we find that C is typically quite small, and
so far has always been less than 10. Consequently, the typical performance lies between 0 (N) and
0 (N 2).

3.3.3 Analysis of EMaps and NoGood calculation

Recall that once the Conflicting sets are calculated, the Emaps and NoGood sets are propagated
upwards from the entity mappings through the match hypotheses. By caching which MH(bi, tj)'s
correspond to Emaps and using a queue, we only operate on each node once. Hence the worst and
best case performance of this operation is 0 (.M).

3.3.4 Analysis of Gmap merge steps

Global matches are formed in a three step process. The first step is to collect all of the consistent

connected components of match hypotheses. This requires starting down the match hypothesis
roots, walking downwards to find consistent structures. Each tree walk takes 0 (Ni), where N is
the number of nodes in the current tree. If there are NR roots, then the first merge step takes
CO(NR * N,). Assuming that most of the match hypotheses will appear in only one or two trees
(some roots may share substructure), we can approximate this by saying that the first merge step
is 0(.M). Call the number of partial Gmaps formed at this stage gpl.

The complexity of the previous steps has been, perhaps surprisingly, small. Matching computa-
tions usually have much worse performance, and we cannot completely escape this. In particular,
a worst-case upper-bound for the second and third merge steps is 0(N!) (although worst-case for
one implies best-case for the other).

The second merge step simply forms new Gmaps by combining those Gmaps from step one that
intersect the same base structure. This is done by looping through each base description root, and
checking which GMaps intersect the structure under that root. For each base description root, all
possible consistent, maximal combinations of the Gmaps that intersect it are generated. In the
worst case, every Gmap could intersect the same base structure. This would mean generating all
possible consistent, maximal sets of Gmaps, which is the operation performed in step 3. We defer
analysis of this case until then. In the other extreme, none of the Gmaps share a common base
structure, and so step 2 requires 0 (9p12 ) operations, although this is not the best-case performance
(see below). Typically, the second merge step is very quick and displays near best-case performance.

The final set of Gmaps is formed by generating all consistent combinations of Gmaps that
exist after merge step 2. The complexity of this final merge step is directly related to the degree

" . of "structuralness" of the base and target domains and how many different predicates are in use.
Worst-case performance occurs when the description language is flat (i.e., no higher-order structure)

and the same predicate occurs many times in both the base and the target. Consider a language
with a single, unary predicate, and base and target dgroups each consisting of Ndistinct facts.

s predicate,

unL r tage -Aop onitn
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In this case every base fact can match with every target fact, and will suggest matching in turn
the entities that serve as their arguments. This reduces to the problem of finding all isomorphic

mappings between two equal size sets. There are N! such mappings.
Now let us consider the best case. If the base and target dgroups give rise to a forest that has

but one root, and that root is consistent, then there is only one Gmap! The second and third merge
steps in this case are now independent of N, and are constant-time.

V Of course, the typical case is somewhere between these two extremes. Typically the vocabulary
of predicates is large, and the relationships between entities diverse. Structure provides a strong
restriction on the number of possible interpretations for an analogy. By the time SME gets to this
phase of the generation process, many of the match hypotheses have been filtered out as being
structurally impossible. Others have been permanently bound to entire sets of match hypotheses
due to merge steps 1 and 2. In addition, our match rules require that relational predicates only
match other predicates with the same name. Thus, SME will perform badly on large dgroups with
no structure. However, SHE will perform extremely well on large dgroups with deep networks of
diverse higher-order relationships. Semantically, the former case roughly corresponds to a jumble
of unconnected facts, and the latter case to a complex argument or theory. The better organized
and justified the knowledge, the better SME will perform.

While we reported potential O(N!) performance for the second merge step, our experience

shows that this is one of the fastest sections of the algorithm. We suspect that 0(N!) behavior
for this step may only be possible in theory and would never show up in practice. This is because
worst-case performance occurs when all members of Gmaps, intersect the same base-structure and
so must be merged in all possible ways (as in step 3). However, Gmaps intersecting the same base
structure are almost always consistent with one another, meaning that step 2 would usually merge
Gmaps, into one Gmap in O(gpl) time!

3.3.5 Analysis of Finding Candidate Inferences

The candidate inferences are gathered by looping through the base description roots for each Gmap,
collecting missing base facts whenever their structure intersects a match hypothesis in the Gmap.
Each fact is tested to ensure that it is not already matched with part of the target description, or if
it represents a contradiction of an existing target fact. The size of the typical candidate inference
is inversely related to the number of roots: More roots implies less structure to infer, and vice
versa. Thus in the worst case we have 0(g * Yb * At), or roughly 0(N). However, this is an
extreme worst-case. First, the At term implies that we check every target fact on each iteration.
The algorithm actually only checks the pertinent target facts (i.e., those with the same functor),
giving a more realistic worst-case of 0(N 3 ). In the best case, there will only be one Gmap and no
candidate inferences, producing constant time behavior.

3.3.6 Analysis of Structural Evaluation Score computation

The complexity of the belief maintenance system is difficult to ascertain. However, it is more or
less irrelevant, since it is possible to eliminate it if detailed justifications of evidential results are
not needed. In the prototype version of SME 151, specialized evidence evaluation procedures were
used which had most of the flexibility of the evidence rules, yet ran in 0(.M) time.

While the flexibility the BMS provides is valuable, we note that in fact the majority of SME's

processing time takes place within it - typically 70 to 80%. However, in terms of real-time this has

AP
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not yet been a serious limitation. On the examples in this paper (and most of the examples we
have examined), SME runs in a matter of a few seconds on a Symbolics machine.

4 Examples

The Structure-Mapping Engine has been applied to over 40 analogies, drawn from a variety of
domains and tasks. It is being used in psychological studies, comparing human responses with
those of SME for both short stories and metaphors. It is also serving as a module in a machine
learning program called PHINEAS, which uses analogy to discover and refine qualitative models of
physical processes such as water flow and heat flow. Here we discuss a few examples to demonstrate
SME's flexibility and generality.

4.1 Methodological constraints

Flexibility is a two-edged sword. The danger in using a program like SHE is that one could imagine
tailoring the match construction and evidence rules for each new example. Little would be learned
by using the program in this way - we would have at best a series of "wind-up toys", a collection
of ad-hoc programs which shed little theoretical light. Here we describe our techniques for avoiding
tailorability.

First, all the cognitive simulatiou experiments were run with a fixed collection of rule sets
(three sets to be exact). Each rule set represented a particular type of comparison sanctioned
by the Structure-Mapping theory (analogy, literal similarity, and mere appearance). As described
above, these rule sets are listed in Appendix A. The mere appearance rules (MA) care only about low-
order matches: attributes and first-order relations. The analogy rules (TA) give strong preference
to systems of relations and higher-order relations, while the literal similarity rules (LS) measure
overall similarity. The first two examples in this section use the TA rules, while the last uses both
TA and MA rules, as indicated.

While the choice of match construction rules is fixed by Structure- Mapping, the values of
evidence weights are not. Although we have not performed a sensitivity analysis, in our preliminary
explorations it appears that the Gmap rankings are not overly sensitive to the particular values of
evidence weights. (Recall that which Gmaps are constructed is independent of the weights, and is
determined only by the construction rules and structural consistency.)

Second, we have accumulated a standard description vocabulary which is used in all experiments.
This is particularly important when encoding natural language stories, where the translation into a

W6 formal representation is underconstrained. By accumulating representation choices across stories,
we attempt to free ourselves from "tailoring" particular examples.

Third, we have tested SHE with descriptions generated automatically by other Al programs. A
0, representation developed to perform useful inferences has fewer arbitrary choices than a represen-

tation developed specifically for learning programs. So far, we have used descriptions generated
by two different qualitative simulation programs. The results are encouraging. For example, SME
actually performs better on a water-flow / heat-flow comparison using more complex descriptions
generated by GIZNO 191 than on many hand-generated descriptions.' We are working on other,
similar systems, as described in Section 6.3. 1.

gIn fact, GIZMO stopped working before SME wasn built.
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SOLAR-SYSTEM RUTHERFORD-ATOM

Cause Force

And Revolve(planet, sun) Electric Charge(electron)

Charge(nucleus)
" Force Attracts(sun, planet) Greater Revolve(electron, nucleus)

/ Attracts(nucleus, electron)
' Gravity Gr tr Ms u)Ms(planet) Greater

ater

Temp(sun) Temp(planet) u

Figure 9: Solar System - Rutherford Atom Analogy.

4.2 Solar System - Rutherford Atom Analogy

The Rutherford model of the hydrogen atom was a classic use of analogy in science. A target system
that was relatively unknown was explained in terms of the (relatively) well-understood behavior of
the solar system. We illustrate SME's operation on this example with a simplified representation,
shown in Figure 9.

The Structure-Mapping Engine constructed three possible interpretations. The highest-ranked
mapping (SES = 6.03) pairs up the nucleus with the sun and the planet with the electron. This
mapping is based on the mass inequality in the solar system playing the same role as the mass
inequality in the atom. It sanctions the inference that the differences in masses, together with
the mutual attraction of the nucleus and the electron, causes the electron to revolve around the

nucleus. This is the standard interpretation of this analogy.
The other major Gmap (SES = 4.04) has the same entity correspondences, but maps the

temperature difference between the sun and the planets onto the mass difference between the
nucleus and the electron. The SES for this Gmap is low for two reasons. First, temperature and
mass are different functions, and hence they receive less local evidence. The second reason is that,
unlike the first Gmap, there is no systematic structure associated with temperature in the base
dgroup, and thus other relations such as the match for ATTRACTS do not enter into this Gmap.

The third Gmap is a spurious collection of match hypotheses which imply that the mass of the
sun should correspond to the mass of the electron, and the mass of the planet should correspond
to the mass of the nucleus. There is even less higher-level structure to support this interpretation
and so SES = 1.87.

This example demonstrates an important aspect of the Structure-Mapping account of analogy.
Notice that the interpretation preferred on structural grounds is also the one with the most infer-
ential import. This is not an accident; the systematicity principle captures the structural features
of well-supported arguments. SME prefers interpretations based on a deep theory (i.e., a subset of a

,. dgroup containing a system of higher-order relations) to those based on shallow associations (i.e.,
a subset of a dgroup with an assortment of miscellaneous facts).

W#
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Water Flow History Heat Flow HistoryP (Situation SO) (Situation SO)

(Decreasing (Pressure (At beaker SO))) (Decreasing (Temp (At horse-shoe SO)))

(Increasing (Pressure (At vial SO))) (Increasing (Temp (At water SO)))
(Decreasing (Amount-of (At beaker SO))) (Greater (Temp (At horse-shoe SO))
(Increasing (Amount-of (At vial SO))) (Temp (At water SO)))
(Greater (Pressure (At beaker SO))

(Pressure (At vial SO)))

(Situation Si) (Situation Si)
(Meets SO S) (Meets SO S)
(Constant (Pressure (At beaker SO)) (Constant (Temp (At horse-shoe S)))
(Constant (Pressure (At vial Si))) (Constant (Temp (At water S)))
(Constant (Amount-of (At beaker S))) (Equal-To (Temp (At horse-shoe S1))
(Constant (Amount-of (At vial S))) (Temp (At water Si)))
(Equal-To (Pressure (At beaker Si))

(Pressure (At vial Si)))

(Function-Of (Pressure ?x) (Function-Of (Temp ?x)
(Amount-of ?x)) (Heat ?x))

Match

Pressure -. Temperature
Amount-of .- Heat

SO 4- SO
S 1 *- S1

beaker -* horse-shoe
vial .- water

Figure 10: Analogical match between water flow history and heat flow history.

1'.

4.3 Discovering Heat Flow

The PHINEAS system is a program which learns by acting as a passive observer, relating ob-
served physical phenomena to known theories of the world [13,14!. These theories are expressed
as qualitative models of various physical processes, such as motion, boiling, and liquid flow, using
Forbus' Qualitative Process Theory [17,181.

When PHINEAS is presented with a situation which the program's current models cannot explain,
an analogical learning module is invoked which attempts to generate a new or revised model that
can account for the new observation. This module uses SME in two ways. First, once an analogous
experience has been accessed (i.e., one which exhibits similar behavior), SME is used to form a match
between the changes observed in the prior experience and the changes taking place in the current
situation. After these correspondences have been established, the domain models used to explain
the previous experience are fetched and SME is used a second time to construct a new model for the

tAI
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~Figure 11: Qualitative Process Theory model of liquid flow.

current domain.
For example, suppose that the program was presented with measurements of the heat flow

situation in Figure 1 and described in Figure 10. If the domain model does not include a theory of
heat flow, PHINEAS will be unable to interpret the new observation.' Using SME, the program is able
to establish an analogy with the previously encountered water flow experience shown in Figure 1
(see also Figure 10). This match serves to establish which properties from the two situations are
behaving in the same way. As shown in Figure 10, the roles of the beaker and the vial in the
water flow history are found to correspond to the roles of the horse shoe and water in the heat flow
history, respectively. Those correspondences which provide a mapping between entities or between
their quantities (e.g., Pressure and Temperature) are stored for later reference.

When it is satisfied that the chosen water flow history is sufficiently analogous to the current
situation, PHINEAS fetches the relevant domain theory which led to its prior understanding of the
base (water flow) experience. Figure 11 shows a domain description for water flow which has been
used in Forbus' qualitative reasoning program [19,22). This model (which is considerably more

,. detailed than the liquid flow model shown previously) states that if we have an aligned fluid path
between the beaker and the vial (i.e., the path either has no valves or if it does, they are all open),
and the pressure in the beaker is greater than the pressure in the vial, then a fluid flow process

ONHINEAS uses the ATM] theory of measurement interpretation to explain observations. See !201 for details.

Jr. ...
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Gmap #1: { (AMOUNT-OF-36 HEAT-WATER) (AMOUNT-OF-33 HEAT-HSHOE)
(PRESSURE-BEAKER TEMP-HSHOE) (PRESSURE-VIAL TEMP-WATER) }

Emape: ( (beaker horse-shoe) (vial water) }
Weight: 2.675
Candidate Inferences: (IMPLIES

(AND (ALIGNED (*skolem* pipe))
(GREATER-THAN (A TEMP-HSHOE) (A TEMP-WATER)))

(AND (Q- (FLOW-RATE pi) (- TEMP-HSHOE TEMP-WATER))
(GREATER-THAN (A (FLOW-RATE pi)) zero)
(I+ HEAT-WATER (A (FLOW-RATE pi)))
(I- HEAT-HSHOE (A (FLOW-RATE pi)))))

Figure 12: An Analogically Inferred Model of Heat Flow.

will be active. This process has a flow rate which is proportional to the difference between the two
pressures. The flow rate has a positive influence on the amount of water in the vial and a negative
influence on the amount of water in the beaker.

Using SME a second time, this theory is matched to the current heat flow situation, producing
. the output shown in Figure 12. The analogy at this stage is highly constrained, due to the set of
. entity and function correspondences established when the water flow and heat flow histories were

matched. SME's rule-based architecture is critical to this operation: PHINEAS simply provides a new
set of match constructor rules that only allow hypotheses consistent with the specific entity and

iF function correspondences previously established. Entities and functions left without a match after
the accessing stage are still left free to match other unmatched entities and functions. For example,
the rule

(MHC-rule (:filter ?b ?t :test (sanctioned-pairing? (fact-functor ?b)
(install-MH ?b ?t)) (fact-functor ?t)))

was used to force a match between those quantities which were found to be analogous during the
behavioral similarity match (e.g., PRESSURE and TEMPERATURE) and prevent any alternate matches
for these quantities (e.g., AMOUNT-OF and TEMPERATURE).

This example demonstrates several points. First, the "analogy" here is composed almost entirely
of candidate inferences, since the system had no prior model of heat flow. Hence, the model was

" constructed by analogy rather than augmented by analogy. This shows the power of SME's candidate
inference mechanism. Second, the example illustrates how SKE's rule-based architecture supports
situations in which the entity correspondences are given prior to the match, rather than derived

i. as a result of the match. Finally, it shows the utility of introducing skolernized entities into the
candidate inferences. The results produced by SME (Figure 12) contain the entity (*skolem* pipe)
This indicates that, at the moment, the heat path is a conjectured entity. At this time, the system
inspects its knowledge of paths to infer that immersion or physical contact is a likely heat path.
However, we note that much knowledge gathering and refinement may still take place while leaving
the heat path as a conjectured entity. An example of this strategy in the history of science is when

l oe-ther was postulated to provide a medium for the flow of light waves.

Li
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Base Story
Karla, an old Hawk, lived at the top of a tall oak tree. One afternoon, she saw a hunter on the ground with

a bow and some crude arrows that had no feathers. The hunter took aim and shot at the hawk but missed. Karla
knew that hunter wanted her feathers so she glided down to the hunter and offered to give him a few. The hunter
was so grateful that he pledged never to shoot at a hawk agair.. He went off and shot deer instead.

Target Story - Analogy
Once there was a small country called Zerdia that learned to make the world's smartest computer.
One day Zerdia was attacked by its warlike neighbor, Gagrach. But the missiles were badly aimed and the attack

failed. The Zerdian government realized that Gagrach wanted Zerdian computers so it offered to sell some of its
computers to the country. The government of Gagrach was very pleased. It promised never to attack Zerdia again.

Target Story - Mere-Appearance
Once there was an eagle named Zerdia who donated a few of her tailleathers to a sportsman so he would promise

never to attack eagles.
One day Zerdia was nesting high on a rocky cliff when she saw the sportsman coming with a crossbow. Zerdia

flew down to meet the man, but he attacked and felled her with a single bolt. As she fluttered to the ground Zerdia
realized that the bolt had her own tailfeathers on it.

Figure 13: Story Set Number 5.

4.4 Modelling Human Analogical Processing

SME is being used in several cognitive simulation studies. Our goal is to compare human responses
with those of SME's for a variety of tasks and problems. For example, two psychological studies
29,501 have explored the variables that determine the accessibility of a similarity match and that

determine the inferential soundness of a match. Structure-Mapping predicts that the degree of
systematic relational overlap will determine soundness [251. A further hypothesis suggested by
Structure Mapping is that surface similarity will determine accessibility [29]. The psychological
studies supported both hypotheses. In order to verify the computational assumptions we then ran
SE on the same examples. Here we briefly summarize the methodology and the results - for
details see '571.

The hypotheses were tested psychologically as follows. Pairs of short stories were constructed
which were alike in one of the three ways: mere appearance, analogy, or literal similarity. Subjects
first read a large set of stories. Then, in a second session, subjects saw similar stories and tried to

-5 retrieve the original stories (the access measure). After that, the subjects were then asked to judge
the inferential soundness of each of the story pairs. For the cognitive simulation study, five groups
of stories (15 in all) were encoded. Then pairs of stories were presented to SMDE, using different rule
sets corresponcing to analogy (the AN rules) and mere appearance (the MA rules). The results

- from the AN rules were used to estimate soundness, while the results from the MA rules were used
to estimate accessibility. One of these story groups will be discussed in detail, showing how SME
was used to simulate a test subject

.0 In the story set shown in Figure 13, the original story concerned a hawk named Karla who
withstands an attack by a hunter. Two similar, target stories were used as potential analogies for
the Karla narration. One was designed to be truly analogous (TA5) and describes a small country
named Zerdia that withstands an attack by another country. The other story (MA5) was designed

:...
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Analogical Match from Karla to Zerdia the country (TA5).

Rule File: appearnce-match. rules Number of Match Hypotheses: 12 Number of Gapa: 1

G.ap 01:
(IAPP!IESS- UNTER RAPPINESS-AGIACH) (ATTACK-HUNTI ATTACK-CAGRACH) (TAKE-FEATHERS BUT-SUPERCOMPUTR)
(WALLIKE-IUDTER WALIZE-GAGRACE) (DtSIE-FEAT RS DES IIE-SUP)COMPUTU)
(R&S-FEAT S USE-SUPERCOMPUTER) (OFFER-FEATHES OFFE-SUPERCOMPTER) (WEAPON-BOV EAPON-BOW)

Emaps: (KILAI ZERDI112) (FEATHS3 SUPERCOMPUTER14) (CLOSS-BOV4 MISSILESIS) (EUNTER2 GAGOACH13)
Weight: 6.411672

Analogical Match from Karla to Zerdia the eagle (MA5).

Rule File: appeamance-mtch.rules Number of Match Hypothese.s: 14 Number of Gftpe: I

Gasp 61:

(OFFU-FEATS OFFER- FEATmS) (TAXE-FEATm S TKE-FEATHEZS) (ATrACK-HUTTER ATTACX-SPORTSMAN)
(SEE-KALA SEE-ZERDzI) (HAS-FEAT.S HAS-FETmRS) (BIRDK-A.A BIRD-ZEDIA) (WEAPON-DOW WEAPON-BOW)
(DESIE-FEATBERS DESIRE-FEATHERS) (WALIKE-I"UNTER VARLIKE-SPORTSMAN) (PERSON-HUNTEI PUSON-SPO&TSMAIN)

Emape: (FETHES3 FEATELSO) (CROSS-BOV4 CRASS-BOWIO) (HUNTER2 SPOITSMANa) (KARLAI ZERDIA7)
Weight: T. 70368

Figure 14: SME's Analysis of Story Set 5, Using the MA Rules.

to be only superficially similar and describes an eagle named Zerdia who is killed by a sportsman.
The representation of the Karla story given to SE was:

(CAUSE (EQUALS (HAPPINESS HUNTER) HIGH)
(PROMISE HUNTER KARLA (NOT (ATTACK HUNTER KARL))))

(CAUSE (OBTAIN HUNTER FEATHERS) (EQUALS (HAPPINESS HUNTER) HIGH))
.rSa (CAUSE (OFFER KARLA FEATHERS HUNTER) (OBTAIN HUNTER FEATHERS))

(CAUSE (REALIZE KARLA (DESIRE HUNTER FEATHERS)) (OFFER KARLA FEATHERS HUNTER))
(FOLLOW (EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED)

(REALIZE KARLA (DESIRE HUNTER FEATHERS)))
(CAUSE (NOT (USED-FOR FEATHERS CROSS-BOW)) (EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED))
(FOLLOW (SEE KARLA HUNTER) (ATTACK HUNTER KARLA))
(WEAPON CROSS-BOW4)

(KARLAS-ASSET FEATHERS3)
(WARLIKE HUNTER2)
(PERSON HUNTER2)

' (BIRD KARLAI)

To test the hypothesis that accessibility depends on the degree of surface match, SME was run
.: C-. on both pairs using the mere-appearance match rules. This measured their degree of superficial

overlap and thus, according to our prediction, the relative likelihood of their accessing the original
story. The output of SME for the MA task is given in Figure 14, which shows that the eagle story
(SES = 7.7) has a higher mere-appearance match rating than the country story (SES 6.4). Thus,
if the surface-accessibility hypothesis is correct, the MA story "Zerdia the eagle" should have led
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Analogical Match from Karla to Zerdia the country (TA5).

Rule File: eaclogy.rula. Number of Match Hypotheses: 54 Number of GMaps: 1

-map 01:
(CAUSE-PROMISE CAUSE-PRDMISE) (SUCCS-ATTACK SUCCESS-ATTACK) (HAPPY-BUNTER HAPPT-GG.ACH)
(RAPPINESS-HUITER HAPPINESS-GAGIACH) (REALIZE-DESIRE REALIZE-DESIRE) (CAUSE-TAKE CAUSE-BUT)
(ATTACK-HUNTER ATTACI-GAGRACE) (DESIRE-FATHER.S DESIRE-SUPERCOMPUTER) (FAILED-ATTAC FAILED-ATTACK)
(TA.E-FEATHERS BUY-SUPEUCOWPUTER) (CAUSE-FAILED-ATTICI CAUSE-FAILED-ATTACK)
(CAUSE-OFFER CAUSE-OFFER) (FOLLOV-REALIZE FOLLOV-REALIZE) (HAS-FELTHD.S USE-SUPERCOMPUTER)
(CAUSE-HAPPY CAUSE-HAPPY) (NOT-ATTACK NOT-ATTACK) (PROMISE-BUNTER PROMISE)
(NOT-HAS-FE.ATHE.RS NOT-USE-SUPERCOMPUTER) (OFFER-FEA THERS OFFER-SUPERCOMPUTER)

Emape (HIGH23 HIGH17) (FEATm.520 SUPERCOMPUTER14) (CROSS-BOW21 MISSILESIS)
(HUTER19 GAGLACH13) (KAULA18 Z.DIA12) (FAILED22 FAILEDIG16)

We2ght: 22.352718

Analogical Match from Karla to Zerdia the eagle (MA5).

4 Rule File: analogyrulee Number of Match Hypothesee: 47 Number of GMape: 1

Gup f1:
(PROMISE-HUNTER PROMISE) (DESIRE-FEA DESIRE-FFATHERS) (TAE-FATHERS TAXE-FEATHERS)
(CAUSE-OFFER CAUSE-OFFER) (OFFEM-FEAT OFFTR-FEATHERS) (HAS-FEATHERS HAS-FEATHERS)
(REALIZE-DESIRE REALIZE-DESIRE) (ATTACK-HUTER ATTACK-SPORTSMAN) (NOT-ATTACK NOT-ATTACK)

. (SUCCESS-ATTACK SUCCESS-ATTACK) (FOLLO-SEE-ATTACK FOLLOW-SEE) (SEE-KAILA S E-ZUEDIA)
* - (FAILED-ATTACK SUCCESSFUL-ATTACK) (CAUSE-TAIK CAUSE-TMAK)

Emape: (FATLED22 TRUElI) (KARLAZS ZERDIA7) (HUTER19 SPORTSMAN8)
(. rHES2o rEAlrss) (CXOSS-BOW21 MOSS-BOVIO)

Weight: 16.816530

Figure 15: SME's Analysis of Story Set 5, Using the TA Rules.

to greater accessibility to the original story for the human subjects than the TA story "Zerdia the
4country".

To test the determinants of soundness, SME was again run on the above pairs of stories, this time
using the analogy (AN) match rules. The output of SME for the TA task is given in Figure 15. Notice
that "Zerdia the country" (SES = 22.4) was found to be a better analogical match to the original
Karla story than "Zerdia the eagle" (SES = 16.8). Thus, according to Gentner's systematicity
principle, it should be judged more sound by human subjects.

The comparison of SME with human performance have been promising. For each of the five
story sets examined, the preferences of SME qualitatively agreed with those of the human subjects.
First, SME replicates human access patterns when in mere-appearance mode (MA rules). SME's
rankings of surface similarity between the base and target are strongly correlated with accessibility
of comparisons in people. Second, psychological evidence indicates that people do indeed use
systematicity and consistency to rate the soundness of a match. As predicted, SME replicates
subject's sot..idness rankings when in analogy mode (AN rules) These results help confirm that
the similarity matches programmed into SME's AN and MA rules do a reasonable job of capturing
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Table 1: SHE performance on described examples.

Number base Number target Total BMS Total match
Example facts/entities facts/entities # MH's # Gmaps run time run time
Simple Water-Heat 11/4 6/4 14 3 0.70 0.23
Solar System-Atom 12/2 9/2 16 3 0.91 0.28
PHINEAS behavioral 40/8 27/6 69 6 9.68 1.92
PHINEAS theory 19/11 13/6 10 1 0.17 0.66
BaseS-TA5 (AN) 26/6 24/6 54 1 5.34 0.87
Base5-MA5 (AN) 26/6 24/5 47 1 4.55 0.98
BseS-TA5 (M.A) 26/6 24/6 12 1 0.38 0.36

? BfeS-M.A5 (M.A) 26/6 24/5 14 1 0.73 0.46
NOTE: All times ae given in seconds. Total match time is total SNIE run time minus BMS run time.

two different kinds of similarity matches that people implicitly use.
We make two additional observations. First, the results demonstrate the considerable leverage

for cognitive modeling that SME's architecture provides. We know of no other general-purpose
matcher which successfully simulates two distinct kinds of human similarity comparisons. Second,
the short story analogies show that SME is capable of matching large structures as well as the
smaller, simpler structures shown previously.

4.5 Review of Performance

SME is written in Common Lisp and the examples in this paper were run on a Symbolics 3640 with
8 megabytes resident memory. A variety of examples have been presented, representing a wide
range of complexity. Table 1 shows a comparison of how well SME performed for each example. To

,' give an accurate account of how fast SME is, we have separated the BMS run time from the total
SME run time, since the computational cost of the BMS can be removed if additional inspectability
is not needed. The run times are given in seconds. From these times it can be seen that SME is
extremely fast at producing unevaluated Gmaps. In fact, it would seem to be close to linear in
the number of match hypotheses and in the number of base and target facts. The majority of the
run time is spent within the BMS, producing structural evaluation scores. However, the total run
times are sufficiently short that we have opted to continue using the BMS for the time being, since
it has proven to be a valuable analysis tool.

The longest runtime occurred for the behavioral match between the water flow and heat flow
observations (PHINEAS behavioral). While the descriptions for this example were the largest, the
primary source of slowdown was the flat representations used to describe the situations.

5 Comparison With Other Work

The Structure-Mapping theory has received a great deal of convergent theoretical support in artifi-
cial intelligence and psychology. Although there are differences in emphasis, there is now widespread
agreement on the basic elements of one-to-one mappings of objects with carryover of predicates
([ .4.34,16,41,42,51,53,661). Moreover, several of these researchers have adopted special cases of
the systematicity principle. For example, Carbonell focuses on plans and goals as the high-order
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relations that give constraint to a system, while Winston [65] focuses on causality. Structure-
Mapping theory subsumes these treatments in three ways. First, it defines mapping rules which are
independent of particular domains or primitives. Second, the Structure-Mapping characterization
applies across a range of applications of analogy, including problem solving, understanding expla-
nations, etc. Third, the Structure-Mapping account treats analogy as one of a family of similarity
comparisons, each with particular psychological privileges, and thus explains more phenomena.

Some models have combined an explicit Structure-Mapping component to generate potential
interpretations of a given analogy with a pragmatic component to select the relevant interpretation
(e.g., [3,42]). Given our experience with PHINEAS, we believe SME will prove to be a useful tool for
such systems.

SME computes a structural match first, and then uses this structural match to derive candidate
inferences. The implementations of Winston [65,66] and Burstein [3] are similar to SME in this
respect. An alternate strategy is used by Kedar-Cabelli [42] and Carbonell [4]. These programs
do not perform a match per se, but instead attempt to carry over "relevant" structure first and
modify it until it applies to the target domain. The match arises as an implicit result of the
structure modification. We know of no complexity results available for this technique, but we
suspect it is much worse than SME. It appears that there is great potential for extensive search
in the modification method. Furthermore, the modification method effectively requires that the
access mechanism is able to provide only salient structures (e.g., purpose-directed [42]), since the
focusing mechanism of a partial match is not present. This means these systems are unlikely to
ever derive a surprising result from an analogy.

A very different approach is taken by Holyoak (39]. In this account, there is no separate
stage of structural matching. Instead, analogy is completely driven by the goals of the current
problem-solving context. Retrieval of the base domain is driven by an abstract scheme of current
problem-solving goals. Creating the mapping is interleaved with other problem-solving activities.
This "pragmatic" account, while appealing in some ways, has several crucial limitations. First, the
pragmatic model has no account of soundness. Without structural consistency, the search space for
matching explodes (see below). Second, analogy is used for other purposes than problem solving.
These purposes include contexts where relevance does not apply. Thus an an.[ogy interpretation
algorithm that requires relevance cannot be a general solution [26,271. Analogy can be used to
explain a new concept and to focus attention on a particular aspect of a situation. Analogy can
result in noticing commonalities and conclusions that are totally irrelevant to the purpose at hand
Third, psychological data indicates that access is driven by surface similarity, not relevance, as
described previously.

We believe the modularity imposed by the Structure-Mapping account has several desirable
features over the pragmatic account. In the Structure-Mapping account, the same match procedure
is used for all applications of analogy. For example, in a problem-solving environment, current plans
and goals influence what is accessed. Once base and target are both present, the analogy mapping
is performed, independently of the particular context. Its results can then examined and tested as
part of the problem-solving process (see [26,27]).

SME demonstrates that an independent, structural matcher can be built which is useful in several
tasks and for a variety of examples (over 40 at this writing). By contrast, no clear algorithms have
been presented based on the pragmatic account, and published accounts so far '38 describe only
two running examples. Another problem concerns potential complexity. We have not yet developed
a good "typical case" analysis of SME's complexity, but empirical evidence indicates that it is quite
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reasonable. The reason is that Structure-Mapping focuses on local properties of the representation.
On the other hand, the pragmatic account appears to involve arbitrary inference, and arbitrary
amounts of knowledge, in the mapping process. Thus we would expect that the average-case
computational complexity of a pragmatically oriented matcher will actually be much worse than
SME.

5.1 Matching Algorithms

To our knowledge, SME is unique in that it generates all structurally consistent analogical mappings
without search. Previous matchers search through the space of possible matches and often return
a single, best match (e.g., [11,35,43,46,60,61,64,65,661). Some research on analogy has concluded
that generating all possible interpretations is computationally intractable [35,65,43]. Our analysis
and empirical results indicate that this conclusion must be substantially modified. Only when
structural consistency does not exist, or is ignored, does the computation become intractable. For
instance, in [43] the knowledge base was uniform and had no higher-order structure. In such cases
exponential explosions are unavoidable.

Winston's matcher [65,66 heuristically searches for a single best match. It begins by enumer-
ating all entity pairings and works upward to match relations, thus generating all NEb!/(NEb-NEt)!
possible entity pairings. Because SME only introduces entity pairings when suggested by potential
shared relational structure, it typically generates many fewer entity pairings. Some limited amount
of pruning due to domain-specific category information was also available on demand, such as re-

: rquiring that males match with males. By contrast, SME ignores attributes when in analogy mode,
unless they play a role in a larger systematic structure. Winston's scoring scheme would attribute
one point for each shared relation (e.g., LOVE, CAUSE), property (e.g., STRONG, BEAUTIFUL), and
class classification (e.g., A-KIND-OF(?x. woman)). Unlike SME's analogy rules, this scheme makes
no distinction between a single, systematic relational chain and a large collection of independent
facts.

Kline's RELAX system [43] focused on matching relations rather than entities. RELAX did
not attempt to maintain structural consistency, allowing many-to-one mappings between entities
or predicate instances. In conjunction with a semantic network, RELAX was able to match items
having quite different syntax (e.g., (Segment Al A2) matching (Angle Al X A2)). However, there
was no guarantee that the best match would be found due to local pruning during search.

Programs for forming inductive generalizations have also addressed the partial matching prob-
lem. These systems use a heuristically pruned search to build up sets of correspondences between
terms which are then variablized to form generalized concept descriptions. Since these systems were
not designed for analogy, they resemble the operation of SME programmed as a literal graph matcher
(e.g., they could not match Pressure to Temperature). Hayes-Roth & McDermott's SPROUTER
'351 and Diettrich & Michalski's INDUCE 1.2 [11] possess our restriction of one-to-one consistency in

" ¢"matching. Vere's THOTH system [60,61] uses less stringent match criteria. Once the initial sets of
matched terms are built, previously unmatched terms may be added to the match if their constants
are in related positions. In the process, THOTH may allow many-to-one mappings between terms.

The usefulness of many-to-one mappings in matches has been discussed in the literature
35,431. Hayes-Roth & McDermott 1351 advocate the need for many-to-one mappings among en-

tities. Kline E43] calls for many-to-one mappings between propositions as well. For example,
Kline points out that in trying to match a description of National League baseball to American
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League baseball, the statement (male NLpitcher) should match both (male ALpitcher) and
(male ALdesignatedhitter).

We disagree with this view, since we believe that structural consistency is central to analogy.

Many-to-one mappings are permitted in artistic metaphor, but are not allowed in explanatory,
predictive analogies [24,321. However, we agree that multiple mappings are sometimes useful [8]. We
propose to solve the problem by viewing many-to--one mappings as multiple analogies between the
same base and target. Since SME produces all of the interpretations of an analogy, a postprocessor
could keep more than one of them to achieve the beneficial effects of multiple interpretations,
without sacrificing consistency and structural clarity. Thus, in the baseball example, SME would

A produce an offense interpretation and a defense interpretation. Postprocessing would combine
these two Gmaps to form a single National League - American League analogy which mapped the
National League pitcher into both the American League pitcher and American League designated
hitter.

S.

-,- 6 Discussion
5:

We have described the Structure-Mapping Engine, a tool-kit for building matchers consistent with
Gentner's Structure-Mapping theory of analogy and similarity. SME is both efficient and flexible.
A particular matching algorithm is specified by a set of constructor rules and evidence rules. It
produces all structurally consistent interpretations of a match, without backtracking. The interpre-
tations include the candidate inferences suggested by the match and a structural evaluation score,
giving a rough measure of quality. We believe we have described SHE's algorithm in sufficient detail
to allow successful replication by other interested researchers.

SME has been used both in cognitive simulation studies and a machine learning project. In the
cognitive simulation studies, the results so far indicate that SME, when guided with analogy rules,
replicates human performance. In the machine learning project (PHINEAS), SME's flexibility provides
the means for constructing new qualitative theories to explain observations.

J.i While our complexity analysis indicates that SME's worst-case performance is factorial, the em-
pirical experience is that the typical behavior is much better than that. Importantly, the character-
istic which determines efficiency is not size, but the systematicity of the knowledge being analyzed.
Unlike many Al systems, the more systematic the knowledge, the better SME will perform.

In this section we discuss some broader implications of the project, and sketch some of our plans
for future work.

6.1 Implications for representation

The SME algorithm is sensitive to the detailed form of the representation. It must be, since we are
forbidding domain-specific inference in the matching process. Existing AI systems rarely have more
than one or two distinct ways to describe any particular situation or theory. But as our programs
grow more complex (or as we consider modeling the range and depth of human knowledge) the num-
ber of structurally distinct representations for the same situacion is likely to increase. For example,
a story might be represented at the highest level by a simple classification (i.e., GREEK-TRAGEDY),
at an intermediate level by relationships involving the major characters (i.e., (CAUSE (MELTING
WAX) FALL23)), and at the lowest level by something like conceptual dependencies. An engineer's
knowledge of a calculator might include its functional description, the algorithms it uses, and the
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axioms of arithmetic expressed in set theory. Unless there is same "window of overlap" between
the levels of description for base and target, no analogy will be found. When our programs reach

PR this complexity, how will SME cope with this situation?
There are several possible approaches to this problem. Consider the set of possible representa-

tions for a description. Assume these representations can be ordered (or at least partially ordered)
in terms of degree of abstraction. If two descriptions are too abstract, there will be no predicate
overlap (GREEK-TRAGEDY versus SHAKESPEARE -DRAMA). If two descriptions are greatly detailed, there
will be too many spurious matches (e.g., describing the actions of characters every microsecond).

~ The problem is to find levels of description which provide useful analogies. We believe one solution
is to invoke SME repeatedly, using knowledge of the definitions of predicates to "slide" the base or

1 target descriptions up or down in the space of possible representations appropriately.
An orthogonal consideration is the degree of systemnaticity. Worst-case behavior can occur

frequently when representations are large and relatively flat. Changes in representation can make
-~ large differences. For example, a PHINEAS problem which took .. was reduced to .. by imposing

more symbolic structure.

6.2 Addressing the Combinatorics

As we have shown, SME is 0 (N 2 ) except for the last critical merge step, which has 0 (N!) worst-
case performance. Our experience has found that even moderately structural domain descriptions
produce excellent performance. However, in practice it is not always convenient to avoid traditional,

K flat domain representations. For example, SME is unable to duplicate Kline's baseball analogy [43J
within a reasonable amount of time (hours). This is due to his flat description of the domain
(e.g., (MALE catcher), (BATS left-fielder), (BATS center-fielder), etc.). Thus for some
cases, generating all possible interpretations of an analogy may be prohibitive. Previous work in
this area has produced matching algorithms that are specifically designed around heuristic search
mechanisms. SME offers a clean line between 'generating all possibilities and imposing heuristic
limitations. If we stop after the first merge step, SME represents an 0 (N 2) algorithm for generating
the complete set of minima! Gmaps! The subsequent merge steps could then be heuristically
driven through a limited search procedure (e.g., beam-search, best-first, etc.) to produce the best

p. 4  or N best maximal interpretations. Alternatively, we could retain the current SME design (recall that
the second merge step is required to support candidate inference generation and is almost always

A4 ~. (N2 ) or better) and simply drop the troublesome third merge step. This is an (unused) option
that the current implementation provides. We have not yet explored the ramifications of dropping
merge step 3, although work with PHINEAS has shown the need for the maximality criterion in

* practice.
In the next sections, we discuss the potential for parallel versions of the SME algorithm. In par-

ticular, we argue that (1) there are many opportunities for parallel speedup, and (2) the expensive
-. .. ~ ~ merge steps can be eliminated in principle.

6.2.1 Mediumn-grained Parallel Architectures

z-. c-We begin by examining each stage of the algorithm to see how it might be decomposed into parallel
operations, and what kinds of speedups might result.

.j
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Constructing Match Hypotheses Running the match constructor rules is a purely local, and
can be broken down into one task for each pair of base item/target item which will either
produce a hypothesis or not. With enough processors, this step becomes unit time.

Computing Conflicting, EMaps, and NoGood sets Computing the Conflicting set is a completely
independent operation. It could either be organized around each base or target item, or
around pairs of match hypotheses. Finding the EMapa and NoGood sets require propagation
of results upwards, and hence must take time proportional to the maximum depth of the the
match hypotheses.

Merge Step 1: Form initial combinations Recall that this step starts from the roots of the
match hypothesis forest, adding the subtree to the list of Gmaps if the hypothesis is not
inconsistent and recursing on its offspring otherwise. The results from each root are inde-
pendent, and so may be done as separate tasks. If each recursive step spawns a new process
to handle each offspring, then the minimum time is proportional again to the depth of the
highest tree in the forest.

Merge Step 2: Combine dependent but unconnected Gmaps Recall that this step com-
bines initial Gmaps which share common base structure and are not inconsistent when taken
together. This procedure can be carried out bottom-up, merging pairs which are consistent
and then iterating on the results. The computation time will be logarithmic in the number
of Gmaps, assuming enough processors and ignoring allocation time.

Merge Step 3: Combine independent collections This can be performed like the previous
step, but requiring that pairs of Gmaps not have common structure. Again, with enough
processors the time is bounded by the log of the number of Gmaps. However, since the
number of Gmaps is in the worst case factorial, the number of tasks required can become
rather large.

The analysis above is cursory at best, and there are no doubt several problems lurking in
creating a highly parallel version of the SME algorithm. However, we believe such algorithms could
be very promising.

SME's simplicity also raises another interesting experimental possibility. Given that currently
many medium-grain parallel computers are being built with reasonable amounts of RAM and a lisp
environment on each machine, one can imagine simply loading a copy of SME into each processor.
Access experiments, for example, would be greatly sped up by allowing a pool of SMEs to work over
the knowledge base in a distributed fashion.

6.2.2 Connectionist Architectures

Another interesting approach would be to only generate a single, best Gmap while still maintaining
SME's "no search" policy The problem of choosing among all possible interpretations in analogy
processing is very much like choosing among possible interpretations of the sentence "John shot two
bucks" in natural language processing. A "no search" solution to this natural language problem
was provided by the connectionist work of Waltz and Pollack [631. In fact, it was their work in
connectionist models of natural language processing that inspired certain aspects of the design of
SME.

W1J4
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Connectionist architectures allow all possible answers to be implicitly represented at once
[16,631. Rather than explicitly constructing all possible sentence interpretations and then choos-
ing the best one, Waltz and Pollack used their networks to implicitly represent all of the possible
choices. Given a particular network, spreading activation and lateral inhibition were used to find

p the single best interpretation.
~' Consider the network produced by SME prior to the Gmap merge steps (shown in Figure 5).

Some match hypotheses support each other (grounding criterion) while others inhibit each other
(Conflicting relations). Viewing this as a spreading activation, lateral inhibition network, it appears
that standard connectionist techniques could be used to produce the best interpretation without
explicitly generating all Gmaps. Furthermore, it may be possible to generate the second-best,
third-best, etc. interpretations on demand by inhibiting the nodes of the best interpretation,
forcing the second best to rise. Thus SME would be able to establish a global interpretation simply
as an indirect consequence of the establishment of local consistency. This would eliminate the single
most expensive computation of the SI4E algorithm. By eliminating explicit generation of all Omaps,

y the complexity of the algorithm could drop to the 0 (N') required to generate the connectionist,
network.

6.3 Future Work

6.3.1 Cognitive Slimulation

r: ~ We have several cognitive simulation studies of analogical reasoning, memory, and learning involving
- SME in progress. We mention only one here. Psychological research shows a marked developmental

shift in analogical processing. Young children rely on surface information in analogical mapping; at
older ages, systematic mappings are preferred [30,31,40,62]. -Further, there is some evidence that a
similar shift from surface to systematic mappings occurs in the novice-expert transition in adults

~; >'In both cases there are two very different interpretations for the analogical shift: (1) acquisition
of knowledge; or (2) a change in the analogy algorithm. The knowledge-based interpretation is

(2 that children and novices lack the necessary higher-order relational structures to guide their analo-
gizing. The second explanation is that the algorithm for analogical mapping changes, either due
to maturation or learning. In human learning it is difficult to decide this issue, since exposure to
domain knowledge and practice in analogy and reasoning tend to occur simultaneously. SME gives

'~ ~ us a unique opportunity to vary independently the analogy algorithm and the amount and kind
of domain knowledge. For example, we can compare identical evaluation algorithms operating on
novice versus expert representations, or we can compare different analogy evaluation rules operat-
ing on the same representation. The performance of SME under these conditions can be compared
with novice versus expert human performance.

We are also exploring ways to reduce the potential for tailorability in the process of translating
descriptions provided as experimental stimuli for human subjects into formal representations for SME
input. For example, Janice Skorstad is creating a graphical editor for producing graphical figures for
experimental stimuli. One output of the editor is a printable picture, the other is a set of symbolic
assertions with numerical parameters. The assertions are then passed into a simple inference engine
(using a logic-based truth-maintenance system) which creates the relational structure SME requires

* by using rules to calculate interesting relationships, such as INS IDE or LEFT-OF.
* Inspired by Winston's use of a pidgin-English parser for input [66], we are also seeking a
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parser that, perhaps in conjunction with a simple inference engine, can produce useful descriptions
of stories. Unfortunately, the parsers we have examined so far require input that is sufficiently
restrictive that our subjects may find the stories unnatural.

6.3.2 Machine Learning Studies

While Falkenhainer's PHINEAS program is already capable of some learning behaviors, there is still
more work to do. He is currently adding to its armatorium of knowledge-refinement techniques,
and investigating access techniques appropriate for implementation on serial computers. He is also
running PHINEAS on a number of additional examples to better test his theories.

PHINEAS is part of a larger machine learning project underway at University of Illinois, called
the Automated Physicist Project. This project, spearheaded by Forbus and Gerald DeJong, also
at Illinois, is building a collection of programs that use qualitative and quantitative techniques
for reasoning and learning about the physical world. DeJong and his students have already built
several interesting programs that use Explanation-Based Learning [9,101 to acquire knowledge of
the physical world f55,491. Forbus' group has already developed a number of useful qualitative
reasoning programs [20,21,37] which can be used in learning projects (as PHINEAS demonstrates).
By combining these results, we hope to build systems that can reason about a wide range of physical
phenomena and learn both from observation and by being taught.
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'A SME Match Rules

" IThe construction of a match is guided by a set of match rules that specify which facts and entities
in the base and target might match and estimate the believability of each possible component of a
match. In our experiments using SME, we currently use three types of rule sets, literal similarity,

- analogy, and mere appearance.

A.I Literal Similarity (LS) Rules

The literal similarity rules look at both relations and object descriptions.

;;;; Define MH constructor rules

;; If predicates are the same, match them

(MHC-rule (:filter ?b ?t :test (eq (fact-functor ?b) (fact-functor 7t)))
( (install-MH ?b ?t))

L;; Intern rule for non-commutative predicates - corresponding arguments only.
;; Match compatible arguments of already matched items

(MHC-rule (:intern ?b ?t :test (and (fact? ?b) (fact? ?t)
(not (commutative? (fact-functor ?b)))
(not (commutative? (fact-functor ?t)))))

(do ((bchildren (fact-arguments ?b) (cdr bchildren))
% (tchildren (fact-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))
(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(inetall-MH (first bcblldren) (first tchildren)))
((and (function? (fact-ftunctor (first bchildren)))

(function? (fact-functor (first tchildren))))
(install-MH (first bchildren) (first tchiLldren)))

Intern rule for commutative predicates - any 'compatible" arguments, regardless of order.
;; Match compatible arguments of already matched items

(MHC-rule (:intern ?b ?t :test (and (fact? ?b) (fact? ?t)F(commutative? (fact-functor ?b))
(commutative? (fact-functor ?t))))

(dolist (bchild (fact-arguments ?b))
(dolist (tchild (fact-arguments ?t))
(cond ((and (entity? bchild) (entity? tchild))

(install-MH bchild tchild))
((and (function? (fact-functor bchild)) (function? (fact-functor tchild)))
(lnstall-MH bchild tchild))))))

Define MH evidence rules

hamnng the same functor is a good sign

(assert' same-functor)
r2

(rule (( intern (,MH 'b 7t) test (and (fact? 7b) (fact' 7t)

(eq (fact-functor 7b) (fact-functor 7t)))))
(if (function" (fact-functor 'b))

(assert' (iaplies same-functor (KN 7b 7t) (0.2 0.0)))
(assert' (implies same-functor (N b It) (0 5 0 0)))))

-r'
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;;check children (arguments) match potential

(initial-assertion (assert! 'childron-potential))

(rule ((:intern (M ?b 7t) :test (and (fact? 1b) (fact? ?t))))

(if (childron-match-potential ?b ?t)
(assert! (implies children-potential (MH ?b ?t) (0.4 0.0)))
(assert! (implies children-potential (MH ?b ?t) (0,0 . 0.8)))))

;,if their order is similar, this is good. If the item is a function,
;; ignore since order comparisons give false support here.

(initial-assertion (assert! 'order-similarity))

(rule ((.intern (MH ?b ?t) :test (and (fact? ?b) (fact? ?t)
(not (function? (fact-functor ?b)))
(not (function? (fact-functor ?t))))))

(cond ((- (fact-order ?b) (fact-order ?t))
(assert! (implies order-similarity (MH ?b ?t) (0.3 0.0))))

((or (- (fact-order ?b) (1+ (fact-order ?t)))

(- (fact-order Tb) (1- (fact-order ?t))))

(assert! (implies order-similarity (MH ?b ?t) (0.2 . 005))))))

d€ ;;propagate evidence down - systematicity

;I support for the arg will be 0.8 of the current support for the parent

(rule ((:intsrn (ME ?bl ?tl) :test (and (fact? ?bi) (fact? ?tl)))

*. (:intern (MH ?b2 7t2) :test (corresponding-argumants? ?b2 ?t2 ?bI ?tl)))

(assert? (implies (MR ?bI ?tl) (MH ?b2 ?t2) (0 8 - 0.0)

.;,, Gmap rules

Support from its MH's. At this time we ignore other factors such as number

,; of candidate inferences, etc.

(rule ((:intern (GMAP ?eg)))
(dolist (uh (gm-elements "eg))

(assert! '(implies (mh-form h) (GMAP ?eg)))))

A.2 Analogy (AN) Rules

The analogy rules prefer systems of relations and discriminate against object descriptions. The
analogy evidence rules are identical to the literal similarity evidence rules. The match constructor

rules only differ in their check for attributes:

Define MH :orstructor rules

If predicates are the same, match them

(MHC-rule ( filter 9b 7t test (and (eq (fact-functor 7b) (fact-functor 7t))
(not (attribute? (fact-functor ?b)))))

(install-MM 7b It))

-q
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;Match compatible arguments of already matched itenu.
Notice attributes are allowed to match here, since they are part of some higher relation that matched.

Intern rule for non-commutative predicates - corresponding arguments only.

A .- (MHC-ruls (:intern ?b ?t :test (and (fact? ?b) (fact? 7t)
(not (commutative? (fact-functor 7b)))
(not (commutative? (fact-functor ?t)))))

(do ((bch~ildren (fact-arguments ?b) (cdr bch~ildren))
(tchildrsn (fact-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildrsa)))
(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(install-.W (first bchildren) (first tchildren)))
((and (function? (fact-functor (first bchildren)))

(function? (fact-functor (first tchildrsn))))
(inst.ll-MH (first bchildren) (first tch~ildren)))
((ad (attribute? (fact-functor (first behildren)))

(eq (fact-fumctor (first bchildren)) (fact-functor (first tchildren))))
* (install-41 (first bchildren) (first tch~ildren)))

Intern rule for commutative predicates - any 'compatible" arguments, not necessarily corresponding.

- (MHC-rule (:intern ?b ?t :test (and (fact? ?b) (fact? ?t)
(commutative? (fact-functor 7b))

'P (commutative? (fact-functor ?t))))
(doliat (bchild (fact-arguments ?b))

(dolist (tchild (fact-argumients Tt))
(cond ((and (entity? bchild) (entity? tchild))

(install1-H bchild tchild))
((and (function? (fact-functor bchild))

(function? (fact-functor tchild)))
(install-OI bchild tchild))
((and (attribute? (fact-functor bchild))

(eq (fact-functor bchild) (fact-functor tcbild)))
(install-MH bchild tchild))))))

- A.3 Mere Appearance (MA) Rules

The mere appearance rules focus on object descriptions and prevent matches between functions or
~ relations. As a result, the number of evidence rules is greatly reduced.

* -~ Define MH constructor rules

A (MHC-rule (,filter 9b 7t :test (and (eq (fact-functor 9b) (fact-functor 7 t))
(=(fact-order ?b) 1)
(=(fact-order 't) W))

'5 (HC-rule ( intern 7b 7t :test (ad (fact? ?b) (fact? 7t)
(not (commutative? (fact-functor 'b)))
(not (commutative? (fact-functor ?t)))))

(do ((bchildren (fact-arguments 'b) (cdr bchildren))
(tchildren (fact-arguments 't) (cdr tchildren)))
((or (null bchildren) (null tchildren)))

Cif (and (entity' (first bchildren)) (entity? (first tchildren)))
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(install-MR (first bchildren) (first tchildren)))))

(MHC-rule (:intern ?b ?t :test (and (fact? ?b) (fact? ?t)

(commutative? (fact-functor ?b))
(commutative? (fact-functor ?t))))

(dolist (bchild (fact-argument. ?b))
(dolist (tchild (fact-arguments ?t))

(if (and (entity? bchild) (entity? tchild))
(Unstall-MH bchild tch~ild)) )) )

Define JVH evidence rules

;;having the same functor is a good sign

(initial-assertion (assert! 'same-functor))

(rule ((:intern (MR ?b ?t) :test (and (fact? ?b) (fact? ?t)
(eq (fact-functor ?b) (fact-functor ?t)))))

(cond ((attribute? (fact-functor ?b))
(assert! (implies same-functor (MH ?b ?t) (0.5 0.0))))

((- 1 (max (fact-order ?b) (fact-order ?t)))

(assert! (implies same-functor (MR ?b ?t) (0.4 0.0))))))

;;propagate evidence down - only for entity MHs caused by attribute pairings
J;; support for the arg nill be 0.9 of the current support for the parent

(rule ((:Iatern (MH ?bl ?tl) test (and (fact? ?bi) (fact? ?tl)
(<- (max (fact-order ?bl)(fact-order ?tl)) 1)))

(:intern (MH ?b2 ?t2) :test (corresponding-arguments? ?b2 ?t2 ?bl ?tl)))
(assert! (implies (MM ?bl ?t1) (MR ?b2 ?t2) (0.9 . 0.0))))

;;;; Gmap rules

;;; Support from its MH's. At this time we ignore other factors such as number of candidate inferences

*. (rule ((:intern (GMAP ?eg)))
4. (dolist (mh (gm-elements ?eg))
*, (assert! '(implies ,(mh-form mh) (GMAP ?eg)))))

B Sample Domain Descriptions

In this section we show the domain descriptions given to SME for the described examples.

B.1 Simple Water Flow - Heat Flow

Water Flow

(defEntity water type inanimate)
(defEntity beaker type inanimate)
(defEntity vial type inanimate)

(defEntity pipe type inanimate)

4%
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(def Description simple-water-flow
entities (water beaker vial pipe)A fa~cts ((f low beaker vial watqr pipe) :name uf low)

((pressure beaker) ;name pressure-beaker)
((pressure vial) :name pressure-vial)
((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial)) :name >diameter)
((cause >pressure wf low) :name cause-flow)
(flat-top water)
(limuid water))

Heat Flow

(defEntity coffee :type inanimate)
(defEntity ice-cube :type inanimate)
(dofEntity bar :type inanimate)
(defEntity heat :type inanimate)

(defDoscription simple-beat-flow
entities (coffee ice-cube bar heat)
facts ((flow coffee ice-cube heat bar) :name bflow)

((temperature coffee) name tomp-coffee)

((greater temp-coffee temp-ice-cube) :name >temperature)
(flat-top coffee)
(liquid coffee)))

B.2 Solar-System - Rutherford Atom

Solar System

(defEntity sun :type inanimate)
(defEntity planet :type inatnmate)

(defDoscription solar-system
entities (sun planet)
facts ((mass sun) :name mass-sun)

((mass planet) :name mass-planet)
((greater mass-sun sms-planet) name >mass)
((attracts sun planet) name attracts)
((revolve-around planet sun) :name revolve)
((and >mass attracts) :name andi)
((cause andi revolve) :name cause-revolve)

-' ((temperature sun) :name temp-sun)
((temperature planet) :name temp-planet)

((greater temp-sun temp-planet) nsme >tamp)
((gravity mass-sun mass-planiet) :name force-gravity)
((cause force-gravity attracts) :name why-attracts)))

Rutherford Atom

(defEntity nucleus :type inanimate)
(defEntity electron :type inanimate)
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(defDescription rutherford-atom
entities (nucleus electron)

facts (((mass nucleus) :name muas-n)

((mass electron) :name mass-)
((greater mass-n mass-e) :name >mass)

((attracts nucleus electron) :name attracts)

((revolve-around electron nucleus) :name revolve)

((charge electron) :name q-electron)
((charge nucleus) :name q-nucleus)

((opposite-sign q-nucleus q-electron) :name >charge)

((cause >charge attracts) name why-attracts)))

B.3 Karla Stories

Zerdia the eagle - base story

(defEntity Karla)
(defEntity hunter)
(defEntity feathers)
(defEntity cross-bow)

(defEntity Failed)

(defEntity high)

(defDsscription base-5
entities (Karla hunter feathers cross-bow Failed high)
facts (((bird Karla) :name bird-Karla)

((person hunter) :name person-hunter)
((warlike hunter) :name warlike-hunter)

((Karlas-aset feathers) :name feathers-asset)
((weapon cross-bow) :name weapon-bow)
((used-for feathers cross-bow ) :name has-feathers)

((not has-feathers) :name not-has-feathers)
((attack hunter Karla) :name attack-hunter)
((not attack-hunter) :name not-attack)
((see Karla hunter) :name see-Karla)
((follow see-Karla attack-hunter) :name follow-see-attack)

((success attack-hunter) :name success-attack)
((equals success-attack Failed) :name failed-attack)
((cause not-has-feathers failed-attack) :name cause-failed-attack)
((desire hunter feathers) :name desire-feathers)

((realize Karla desire-feathers) :name realize-desire)
((follow failed-attack realize-desire) :name follow-realize)

((offer Karla feathers hunter) :name offer-feathers)

((cause realize-desire offer-feathers) :name cause-offer)
((obtain hunter feathers) :name take-feathers)
((cause offer-feathers take-feathers) :name cause-take)

((happiness hunter) :name happiness-hunter)
((equals happiness-hunter high) :name happy-hunter)
((cause take-fezthers happy-hunter) :name cause-happy)
((promise hunter Karla not-attack) :name promise-hunter)

((cause happy-hunter promise-hunter) 'name cause-promise)))

Zerdia the country - TA5

(defEntity Zerdia)

o l
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(defEntity Gagrach)

(defEntity supercoaputer)9(defEntity missiles)
(defEntity failed)

(def Entity high)

(defDescription ta-6
'e entities (Zerdia Gagrach supercomputer missiles failed high)

facts (((country Zerdia) :name country-Zerdia)

((country Gagrach) :name country-Gagrach)
((warlike Gagrach) :nae warlike-Gagrach)
((Zerdias-amset supercomputer) :name supercoaputer-asset)
((weapon missiles) :nme weapon-bow)

((used-for supercomputer missiles ) :name use-supercomputer)
((not use-supercomputer) :name not-use-supercomputer)

((attack Gagrach Zerdia) :name attack-Gagrach)
((not attack-Gagrach) :name not-attack)
((success attack-Gagrach) :name success-attack)
((equals success-attack failed) name fLailed-attack)
((cause not-use-supercomputer failed-attack) :name cause-failed-attack)
((desire Gagrach supercomputer) :name desire-supercoaputer)
((realize Zerdia desire-supercomputer) :name realize-desire)

((follow failed-attack realize-desire) :name follow-realize)
((offer Zerdia supercomputer GLagrach) :name offer-aupercouputer)

b ; ((cause realize-desire offer-supercomputer) :name cause-offer)

((obtain Gagrach supercomputer) :name buy-superconputer)
((cause offer-supercomputer buy-supercomputer) :name cause-buy)

((happiness Gagrach) :name happiness-Gagrach)
((equals happiness-Gagrach high) :name happy-Gagrach)
((cause buy-supercomputer happy-Gagrach) :nane cause-happy)

((promise Gagrach Zerdia not-attack) :name promise)
((cause happy-Gagrach promise) :name cause-promise)))

Zerdia the hawk - MA5

(defEntity Zerdia)
(defEntity sportsman)
(defEntity feathers)

(defEntity cross-bow)

(defEntity true)

(defDescription aa-S

entities (Zerdia sportsman feathers cross-bow true)
facts (((bird Zerdia) :name bird-Zerdia)

* ' ~((person sportsman) name person-sportsman)
((warlike sportsman) :name warlike-sportsan)
((Zerdias-asset feathcrs) :name feathers-asset)
((weapon cross-bow) :name weapon-bow)

((used-for feathers cross-bow ) :name has-feathers)
((desire sportsman feathers) :name desire-feathers)

((realize Zerdia desire-feathers) :nae realize-desire)
((offer Zerdia feathers sportsman) :name offer-feathers)

((cause realize-desire offer-feathers) :nme cause-offer)

((obtain sportsman feathers) :name take-feathers)
((cause offer-feathers take-feathers) :name cause-take)

((attack sportsman Zerdia) :name attack-sportsman)

C Ii
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((not attack-sportsman) :name not-attack)
((promise sportsman Zerdia not-attack) :name promise)
((cause take-feathers prosase) :name cause-proaise)
(usee Zerdia sportsman) :name see-Zerdia)
((follow promise see-Zerdia) :name follow-promise)
((follow see-Zerdia attack-sportsman) :name follow-see)
((success attack-sportsman) :name success-attack)
((equals success-attack true) :name successful-attack)
((cause has-feathers successful-attack) :name cause-success-attack)
((realize Zerdia has-feathers) :name realize-Zerdta)
((follow successful-attack realize-Zerdia) :name follow-succ-attack)))
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